Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information (ESI)

Fate of Pyrene on Mineral Surfaces during Thermal Remediation as a Function of Temperature

Cameron P. Oden^a, Charles J. Werth^b, Luiza Notini^b, Lynn E. Katz^b

^aDepartment of Civil, Environmental, and Architectural Engineering, University of

Colorado Boulder, Boulder, Colorado

^bDepartment of Civil, Architectural, and Environmental Engineering, University of Texas

at Austin, Austin, Texas

^cDepartment of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

*Corresponding Author:

Cameron Oden

503-409-8854

cameron.oden@colorado.edu

Environmental Science: Processes and Impacts

Content	ts
---------	----

1. GC/MS Methods
Table S2: Lowest significant difference (LSD) calculated from ANOVA of treatmenttemperature and percent removal of pyrene in parent removal experiments. Differences inremoval greater than LSD are highlighted in green
2. Parent Removal Experiments
Table S1: p-value from ANOVA of treatment temperature and percent removal of pyrenein parent removal experiments. p-values < 0.05 are highlighted in green
3. Mineral-Limited Experiments
Figure S1: Standard curves derived from MassHunter qualitative analysis
Table S3: Detected by-products from dry, mineral-limited experiments with magnetitelisted by temperature with match score, molecular weight, and peak area. Estimated massesare included for compounds included in calibration curve (Figure S1)
Table S4: Detected by-products from saturated, mineral-limited experiments with magnetite listed by temperature with match score, molecular weight, and peak area. Estimated masses are included for compounds included in calibration curve (Figure S1) 6
4. Mineral Analysis
Table S5: Specific surface area of selected minerals determined by N2-BET7
4.1. XRD Patterns7
Figure S2. XRD patterns showing no bulk transformation of hematite under selected conditions: a) raw hematite, b) hematite treated at 150 °C for 30 min in air with 0.050 g pyrene and 50 uL of H ₂ O, c) hematite treated at 150 °C for 30 min in N ₂ with 0.050 g pyrene, d) hematite treated at 150 °C for 30 min in N ₂ without pyrene, e) hematite treated at 250 °C for 30 min in air with 0.050 g pyrene and 50 uL of H ₂ O, f) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N ₂ without pyrene
Figure S3. XRD patterns showing no bulk transformation of magnetite under various conditions: a) raw magnetite, b) magnetite treated at 150 °C for 30 min in air with 0.050 g pyrene and 50 uL of H ₂ O, c) magnetite treated at 150 °C for 30 min in N ₂ with 0.050 g pyrene, d) magnetite treated at 150 °C for 30 min in N ₂ without pyrene, e) magnetite treated at 250 °C for 30 min in air with 0.050 g pyrene and 50 uL of H ₂ O, f) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N ₂ without pyrene
Figure S4: XRD patterns of birnessite after treatment under various conditions. Crystal phases detected shown next to diffraction patterns
4.2. XPS Spectra
Figure S5. XPS Fe 2p spectra for a) untreated hematite, b) hematite treated at 250 °C for 30 min in N ₂ , c) hematite treated at 250 °C for 30 min in air with 100 uL H ₂ O, d) hematite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, e) hematite treated at 250 °C for 30 min in air with 0.050 g pyrene and 100 uL H ₂ O,

F 30 m 2: pi	Yigure S6. XPS Fe 2p spectra for a) untreated magnetite, b) magnetite treated at 250 °C for 0 min in N2, c) magnetite treated at 250 °C for 30 min in air with 100 uL H2O, d) hagnetite treated at 250 °C for 30 min in N2 with 0.050 g pyrene, e) magnetite treated at 50 °C for 30 min in air with 0.050 g pyrene and 100 uL H2O. Satellite peak indicating resence of hematite indicated by arrows
F 30 bi °(au Si	Yigure S7. XPS Mn 2p spectra for a) untreated birnessite, b) birnessite treated at 250 °C for 0 min in N ₂ , c) birnessite treated at 250 °C for 30 min in N ₂ with 0.050 g pyrene, d) irnessite treated at 250 °C for 30 min in air with 100 uL H ₂ O, d) birnessite treated at 250 °C for 30 min in air with 0.050 g pyrene and 100 uL H ₂ O. Presence of shoulder indicated by rrows. Shoulder located on the left side of the peak indicates the presence of MnO ₂ . houlder located on the right side of the peak indicates the presence of Mn ₂ O ₃
4.3.	Electron transfer calculations
T ca	Cable S6. Fe(III):Fe(II) ratios of magnetite samples treated under various conditionsalculated from XPS Fe 2p peaks.13
5. Mös	ssbauer
F	`igure S8. Mössbauer spectra of magnetite blank, magnetite wet and magnetite dry 14
T co	Cable S7. Mössbauer parameters of magnetite samples derived from fitting spectraollected at 140 K.14
F	`igure S9. Mössbauer spectra of hematite blank, hematite wet and hematite dry 15
T co	Cable S8. Mössbauer parameters of magnetite samples derived from fitting spectraollected at 140 K.15
6. By-	Product Oxidation States
T co	Cable S9: Average oxidation state of carbons atoms in byproducts detected from oncentrated extracts in mineral limited experiments with magnetite in a dry environment. 16
T co er	Cable S10: Average oxidation state of carbons atoms in byproducts detected from oncentrated extracts in mineral limited experiments with magnetite in a saturated nvironment.

1. GC/MS Methods

Extracts -

Injection Volume: 1 uL Inlet Temperature: 320 °C Column Flow: 1.2 mL/min Temperature Program:

	Rate (°C/min)	Final Temperature (°C)	Hold Time (min)
Initial		50	0.4
Ramp 1	25	195	1.5
Ramp 2	8	255	0
Ramp 3	2.5	260	0
Ramp 4	20	295	0
Ramp 5	10	310	3.5

MSD Transfer Line Temperature: 300 °C MS Source Temperature: 250 °C MS Quad Temperature: 150 °C

Headspace –

Injection Volume: 200 uL Inlet Temperature: 250 °C Column Flow: 0.7 mL/min Split Ratio: 20:1 Temperature Program:

	Rate (°C/min)	Final Temperature (°C)	Hold Time (min)
Initial		35	5
Ramp 1	25	250	2

MSD Transfer Line Temperature: 300 °C MS Source Temperature: 230 °C MS Quad Temperature: 150 °C

2. Parent Removal Experiments

Table S1: p-value from ANOVA of treatment temperature and percent removal of pyrene in parent removal experiments. p-values < 0.05 are highlighted in green.

p-value	Dry	Wet
Bir	3.6E-05	0.0010
Mag	0.00011	0.20
Hem	0.0067	0.043

Table S2: Lowest significant difference (LSD) calculated from ANOVA of treatment temperature and percent removal of pyrene in parent removal experiments. Differences in removal greater than LSD are highlighted in green.

Exper	iment	LSD	AVG ₁₅₀	Δ ₁₅₀₋₂₀₀	AVG ₂₀₀	Δ ₂₀₀₋₂₅₀	AVG ₂₅₀	Δ ₁₅₀₋₂₅₀
	Bir	8.1	46.8	25.2	72.0	28.0	100.0	53.2
Dry	Mag	5.2	46.7	16.9	63.6	11.0	74.6	27.8
	Hem	17.7	19.2	14.2	33.4	36.9	70.3	51.1
		LSD	AVG ₇₅	Δ ₇₅₋₁₀₀	AVG ₁₀₀	Δ ₁₀₀₋₁₅₀	AVG ₁₅₀	Δ ₇₅₋₁₅₀
	Bir	8.8	60.1	19.5	79.5	12.1	91.6	31.6
Wet	Mag	19.9	60.4	18.1	78.5	-1.1	77.4	17.0
	Hem	12.1	65.5	10.5	75.9	9.5	85.5	20.0

3. Mineral-Limited Experiments

Figure S1: Standard curves derived from MassHunter qualitative analysis.

Table S3: Detected by-products from dry, mineral-limited experiments with magnetite
listed by temperature with match score, molecular weight, and peak area. Estimated
masses are included for compounds included in calibration curve (Figure S1).

Temperature	Compound	Score	MW	Peak Area	Mass (µg)
500 °C	4,5-diethyl-octane	97	170.2	26277377	
	5,6-dimethyl-decane	96	170.2	21254399	
	5-methyl-undecane	91	170.2	4170193	
	3-ethyl-5-methyl-1-propyl-cyclohexane	89	168.2	7704961	
	(1,2-dimethylbutyl)-cyclohexane	92	168.2	16568368	
	Undecyl-cyclohexane		238.3	8400050	
	Octyl-cyclohexane	91	196.2	13062669	
	Naphthalene	96	128.1	38510240	40
	Phenanthrene	98	178.1	2645088	2.7
	Benzo[a]fluorene	87	216.1	262814	
	1-methyl-pyrene	93	216.1	1478264	
	Perylene	82	252.1	107528	
	1-phenyl-pyrene	97	278.1	5311060	
	Benzo[ghi]perylene	91	276.1	181424	0.21
	Indeno[1,2,3-cd]pyrene	84	276.1	102196	
300 °C	9-ethenyl-anthracene	96	204.1	6861137	
	Fluoranthene	94	202.1	12437093	10
200 °C	2,2',5,5'-tetramethyl-1,1'-Biphenyl	82	210	76709	
	Cyclopenta[def]phenanthrene	94	190	1286791	
	1-phenyl-naphthalene	85	204	9648460	
	Benzo[a]fluorene	90	216	614798	
	Benzo[c]fluorene	87	216	230230	
100 °C	Cyclopenta[def]phenanthrene	95	190.1	1259038	
	4,5-dihydro-acephenanthrylene	91	204.1	10143710	
	Benzo[c]fluorene	86	216.1	55594	
	Benzo[b]fluorene	94	216.1	534719	
	Benzo[a]fluorene	83	216.1	196969	

Temperature	Compound	Score	MW	Peak Area	Mass (µg)
500 °C	3-n-Propyl-5-methylhexan-2-one	92	156.2	6431370	
	4,5-diethyl-octane	97	170.2	27918984	
	5,6-dimethyl-decane	95	170.2	22753803	
	5-methyl-undecane	91	170.2	4489649	
	3-ethyl-5-methyl-1-propyl-cyclohexane	89	168.2	8005084	
	(1,2-dimethylbutyl)-cyclohexane	92	168.2	16709801	
	Octyl-cyclohexane	90	196.2	13264257	
	Cyclohexaneethanol	83	128.1	3569167	
	3-Hexanone	84	100.1	23292995	
	Biphenyl	82	154.1	98833	
	5.8-Tridecadione	82	212.2	968078	
	Naphtho[2,1-b]furan	81	168.1	43112	
	Dibenzofuran	89	168.1	146441	
	Benzophenone	95	182.1	224426	
	Phenanthrene	99	178.1	7489250	78
	1-(phenylmethylene)-indene	95	204.1	162821	1.0
	Phenalen_1_one	00	180.1	8025703	
	Cyclopenta(def)phenanthrenone	82	204.1	3/17633	
	Banzanthrana	02	204.1	400780	
	Benzolalfluorena	04	210.1	2172001	
	1 mothyl nymon	94	210.1	10474907	
	1-memyi-pyrene	95	210.1	104/480/	
	S,4-diffydro-cyclopenta(cd/pyrene	89 82	228.1	264062	
	Naphtho[2,1,8,7-Kinnijxanthene	82 82	242.1	409910	
	5-Methoxy-benzo[c]phenanthrene	82 97	258.1	3380678	
	1-nydroxypyrene	8/	218.1	3464928	1.0
	Benzolejpyrene	95	252.1	901841	1.0
	1-pneny1-pyrene	9/	2/8.1	30292897	
		90	278.1	1181447	0.02
200.00	Indeno[1,2,3-cd]pyrene	94	2/6.1	355826	0.92
300 °C	4,4-dimethyl-undecane	80	184.2	6///6	
	4,5-dietnyi-octane	85	1/0.2	233128	
	3,4,5-trimethyl-heptane	91	142.2	1390/1	
	(1,2-dimethylbutyl)-cyclonexane	91	168.2	285668	
	(1-methylethyl)-cyclohexane	85	126.1	185384	
	3-n-Propyl-2,4-pentanedione	81	142.1	54900	
	Cyclopenta[def]phenanthrene	97	190.1	1453981	
	9-ethenyl-anthracene	90	204.1	10600039	
	Benzo[c]fluorene	93	216.1	659899	
	Benzo[a]fluorene	95	216.1	659912	
	1,3-dimethyl-pyrene	80	230.1	1403443	
	Isobutyl Stearate	92	340.3	9304170	
	1-Hydroxypyrene	84	218.1	194074	
200 °C	Cyclopenta[def]phenanthrene	96	190.1	778656	
	4,5-dihydro-acephenanthrylene	94	204.1	6637244	
	Benzo[a]fluorene	92	216.1	366328	
	Benzo[c]fluorene	90	216.1	136785	
100 °C	Cyclopenta[def]phenanthrene	96	190.1	872696	
	9-ethenyl-anthracene	90	204.1	7531669	
	Benzo[a]fluorene	92	216.1	425216	
	Benzanthrene	86	216.1	223624	

Table S4: Detected by-products from saturated, mineral-limited experiments withmagnetite listed by temperature with match score, molecular weight, and peak area.Estimated masses are included for compounds included in calibration curve (Figure S1).

4. Mineral Analysis

Table S5: Specific surface area ofselected minerals determined by N2-BET.

Mineral	Formula	Specific Surface Area (m²/g)
Birnessite	δ-MnO ₂	118
Magnetite	Fe ₃ O ₄	5.7
Hematite	Fe ₂ O ₃	7.4
Quartz	SiO ₂	3.7

4.1. XRD Patterns

Figure S2. XRD patterns showing no bulk transformation of hematite under selected conditions: a) raw hematite, b) hematite treated at 150 °C for 30 min in air with 0.050 g pyrene and 50 uL of H₂O, c) hematite treated at 150 °C for 30 min in N₂ with 0.050 g pyrene, d) hematite treated at 150 °C for 30 min in N₂ with 0.050 g pyrene, d) hematite treated at 150 °C for 30 min in N₂ with 0.050 g pyrene, d) hematite treated at 250 °C for 30 min in A₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene pyre

Figure S3. XRD patterns showing no bulk transformation of magnetite under various conditions: a) raw magnetite, b) magnetite treated at 150 °C for 30 min in air with 0.050 g pyrene and 50 uL of H₂O, c) magnetite treated at 150 °C for 30 min in N₂ with 0.050 g pyrene, d) magnetite treated at 150 °C for 30 min in N₂ with 0.050 g pyrene, d) magnetite treated at 150 °C for 30 min in N₂ with 0.050 g pyrene, d) magnetite treated at 150 °C for 30 min in N₂ with 0.050 g pyrene, d) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, g) magnetite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene and g py

Figure S4: XRD patterns of birnessite after treatment under various conditions. Crystal phases detected shown next to diffraction patterns.

4.2. XPS Spectra

Figure S5. XPS Fe 2p spectra for a) untreated hematite, b) hematite treated at 250 °C for 30 min in N₂, c) hematite treated at 250 °C for 30 min in air with 100 uL H₂O, d) hematite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, e) hematite treated at 250 °C for 30 min in air with 0.050 g pyrene and 100 uL H₂O,

Figure S6. XPS Fe 2p spectra for a) untreated magnetite, b) magnetite treated at 250 °C for 30 min in N2, c) magnetite treated at 250 °C for 30 min in air with 100 uL H2O, d) magnetite treated at 250 °C for 30 min in N2 with 0.050 g pyrene, e) magnetite treated at 250 °C for 30 min in air with 0.050 g pyrene and 100 uL H2O. Satellite peak indicating presence of hematite indicated by arrows.

Figure S7. XPS Mn 2p spectra for a) untreated birnessite, b) birnessite treated at 250 °C for 30 min in N₂, c) birnessite treated at 250 °C for 30 min in N₂ with 0.050 g pyrene, d) birnessite treated at 250 °C for 30 min in air with 100 uL H₂O, d) birnessite treated at 250 °C for 30 min in air with 0.050 g pyrene and 100 uL H₂O. Presence of shoulder indicated by arrows. Shoulder located on the left side of the peak indicates the presence of MnO₂. Shoulder located on the right side of the peak indicates the presence of Mn₂O₃.

4.3. Electron transfer calculations

$$\begin{aligned} C_{16}H_{10} + 6H^{+} + 6e^{-} &\rightarrow 8C_{2}H_{2} \\ 2(Fe_{2}^{3+}Fe^{2+})O_{4} + H_{2}O &\rightarrow 3Fe_{2}O_{3} + 2H^{+} + 2e^{-} \\ C_{16}H_{10} + 6\left(Fe_{2}^{3+}Fe^{2+}\right)O_{4} + 3H_{2}O &\rightarrow 9Fe_{2}O_{3} + 8C_{2}H_{2} \\ Mass of F_{3}O_{4} &= (0.05 \ g \ pyrene) \left(\frac{mol \ pyrene}{202 \ g \ pyrene}\right) \left(\frac{6 \ mol \ F_{3}O_{4}}{mol \ pyrene}\right) \left(\frac{231.6 \ g \ F_{3}O_{4}}{mol \ F_{3}O_{4}}\right) = 0.34 \ g \ F_{3}O_{4} \end{aligned}$$

$$2MnO_{2} + H_{2}O \rightarrow Mn_{2}O_{3} + 2H^{+} + 2e^{-}$$

$$C_{16}H_{10} + 6MnO_{2} + 3H_{2}O \rightarrow 3Mn_{2}O_{3} + 8C_{2}H_{2}$$

$$Mass of MnO_{2} = (0.05 \ g \ pyrene) \left(\frac{mol \ pyrene}{202 \ g \ pyrene}\right) \left(\frac{6 \ mol \ MnO_{2}}{mol \ pyrene}\right) \left(\frac{86.9 \ g \ MnO_{2}}{mol \ MnO_{2}}\right) = 0.12 \ g \ MnO_{2}$$

 Table S6. Fe(III):Fe(II) ratios of magnetite samples treated under various conditions calculated from XPS

 Fe 2p peaks.

Sample	Fe(III):Fe(II)	Std Dev
Untreated	7.3	1.69
250 °C for 30 min in N ₂	5.4	1.9
250 °C for 30 min in N $_2$ with 0.050 g pyrene	7.2	7.3
250 °C for 30 min in air with 100 uL H ₂ O	4.9	2.6
250 °C for 30 min in air with 0.050 g pyrene and 100 uL $$\rm H_2O$$	5.0	1.9

5. Mössbauer

Figure S8. Mössbauer spectra of magnetite blank, magnetite wet and magnetite dry.

		CS ^a	QS⁵	H℃	Std(H)	Area
		(mm/s)	(mm/s)	(T)	(T)	(%)
Magnetite	Fe ³⁺	0.39	-0.021	51.1	1.17	57.5
blank	Fe ^{2.5+}	0.79	0.043	47.3	4.30	42.5
Magnetite wet	Fe ³⁺	0.39	-0.011	51.2	1.45	58.7
	Fe ^{2.5+}	0.79	0.016	47.3	4.30	41.3
Magnetite dry	Fe ³⁺	0.41	-0.006	51.4	1.49	64.2
	Fe ^{2.5+}	0.79	-0.016	45.8	8.10	35.8

^a Center shift

^b Quadrupole shift

° Hyperfine Field

^d Standards deviation of the Voigt profile for the hyperfine field

Figure S9. Mössbauer spectra of hematite blank, hematite wet and hematite dry.

Table S8. Mössbauer	parameters of	magnetite	samples	derived from	fitting spectra	a collected at 140 K
---------------------	---------------	-----------	---------	--------------	-----------------	----------------------

	CS ^a	QS ^b	Hc	Std(H)	Area
	(mm/s)	(mm/s)	(T)	(T)	(%)
Hematite blank	0.47	0.122	53.4	1.95	100
Hematite wet	0.46	0.120	53.5	1.95	100.0
Hematite dry	0.47	0.159	53.5	2.51	100.0

^a Center shift

^d Standards deviation of the Voigt profile for the hyperfine field

^b Quadrupole shift ^c Hyperfine Field

6. By-Product Oxidation States

Table S9: Average oxidation state of carbons atoms in byproducts detected from concentrated extracts in mineral limited experiments with magnetite in a dry environment.

Тетр			Avg C
$(^{\circ}C)$	Compound	Formula	Ox State
500	Octane, 4,5-diethyl-	C12H26	-2.17
500	Decane, 5,6-dimethyl-	C12H26	-2.17
500	Undecane, 5-methyl-	C12H26	-2.17
500	Cyclohexane, 3-ethyl-5-methyl-1-propyl-	C12H24	-2.00
500	Cyclohexane, (1,2-dimethylbutyl)-	C12H24	-2.00
500	Cyclohexane, undecyl-	C17H34	-2.00
500	Cyclohexane, octyl-	C14H28	-2.00
500	Naphthalene	C10H8	-0.80
300	Anthracene, 9-ethenyl-	C16H12	-0.75
100	Acephenanthrylene, 4,5-dihydro-	C16H12	-0.75
500	Phenanthrene	C14H10	-0.71
500	Pyrene, 1-methyl-	C17H12	-0.71
100	7H-Benzo[c]fluorene	C17H12	-0.71
100	11H-Benzo[b]fluorene	C17H12	-0.71
100	11H-Benzo[a]fluorene	C17H12	-0.71
100	4H-Cyclopenta[def]phenanthrene	C15H10	-0.67
500	Pyrene, 1-phenyl-	C22H14	-0.64
300	Fluoranthene	C16H10	-0.63
	Pyrene	C16H10	-0.63
500	Perylene	C20H12	-0.60
500	Benzo[ghi]perylene	C22H12	-0.55
500	Indeno[1,2,3-cd]pyrene	C22H12	-0.55

			Avg C
Temp (°C)	Compound	Formula	Ox State
300	Heptane, 3,4,5-trimethyl-	C10H22	-2.20
500	Decane, 5,6-dimethyl-	C12H26	-2.17
500	Undecane, 5-methyl-	C12H26	-2.17
300	Octane, 4,5-diethyl-	C12H26	-2.17
500	Cyclohexane, octyl-	C14H28	-2.15
300	Undecane, 4,4-dimethyl-	C13H28	-2.15
500	Cyclohexane, 3-ethyl-5-methyl-1-propyl-	C12H24	-2.00
300	Cyclohexane, (1,2-dimethylbutyl)-	C12H24	-2.00
300	Cyclohexane, (1-methylethyl)-	C14H28	-2.00
300	Isobutyl stearate	C22H44O2	-1.82
500	3-n-Propyl-5-methylhexan-2-one	C10H20O	-1.80
500	Cyclohexaneethanol	C8H16O	-1.75
500	3-Hexanone	C6H12O	-1.67
500	5,8-Tridecadione	C13H24O2	-1.54
300	3-n-Propyl-2,4-pentanedione	C8H14O2	-1.25
500	Biphenyl	C12H10	-0.83
300	Pyrene, 1,3-dimethyl-	C18H14	-0.78
500	1H-Indene, 1-(phenylmethylene)-	C16H12	-0.75
100	Anthracene, 9-ethenyl-	C16H12	-0.75
500	Phenanthrene	C14H10	-0.71
500	Pyrene, 1-methyl-	C17H12	-0.71
100	11H-Benzo[a]fluorene	C17H12	-0.71
100	7H-Benzanthrene	C17H12	-0.71
500	Cyclopenta(cd)pyrene, 3,4-dihydro-	C18H12	-0.67
100	Cyclopenta[def]phenanthrene	C15H10	-0.67
500	Pyrene, 1-phenyl-	C22H14	-0.64
500	Pentacene	C22H14	-0.64
500	5-Methoxy-benzo[c]phenanthrene	C19H14O	-0.63
	Pyrene	C16H10	-0.63
500	Benzophenone	C13H10O	-0.62
500	Benzo[e]pyrene	C20H12	-0.60
500	Indeno[1,2,3-cd]pyrene	C22H12	-0.55
500	Naphtho[2,1-b]furan	C12H8O	-0.50
500	Dibenzofuran	C12H8O	-0.50
300	1-Hydroxypyrene	C16H10O	-0.50
500	1H-Phenalen-1-one	C13H8O	-0.46
500	Naphtho[2,1,8,7-klmn]xanthene	C18H10O	-0.44
500	Cyclopenta(def)phenanthrenone	C15H8O	-0.40

Table S10: Average oxidation state of carbons atoms in byproducts detected from concentrated extracts in mineral limited experiments with magnetite in a saturated environment.