Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Effects of Aluminum Incorporation on Schwertmannite

Structure and Surface Properties

Sergio Carrero^{a,*}, Alejandro Fernandez-Martinez^b, Rafael Pérez-López^c, Jordi Cama^a,

Catherine Dejoie ^d, José Miguel Nieto ^c

^a Institute of Environmental Assessment and Water Research (IDÆA-CSIC), 08034,

Barcelona, Spain

^b Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre,

38000 Grenoble, France

° Department of Earth Sciences & Research Center on Natural Resources, Health and the

Environment, University of Huelva, Campus 'El Carmen', 21071, Huelva, Spain

^d European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble, 3800, France

^{*}Corresponding author. Tel.: +34 934 006 100 Ext: 437695

E-mail address: sergio.carrero@idaea.csic.es (S. Carrero)

Sample	% w w (OH ⁻ + H ₂ O)	% w lost TGA		
Al-Sch _{0.00}	24.41	25.02		
Al-Sch _{0.03}	21.94	24.51		
Al-Sch _{0.08}	20.80	24.67		
Al-Sch _{0.32}	27.22	24.79		

 Table S1. Weight percent of stoichiometric water and weight loss (%) from TGA data.

	As 1	As 2	As 3	As 4	As 5	As 6	As 7	As 8	As 9	As 10
Total As(V) (mmol L ⁻¹)	0.06	0.1	0.5	0.8	1	1.5	3	5	7	10
H ₂ AsO ₄ ⁻ (%)	96.33	96.32	96.31	96.32	96.35	96.29	96.22	96.14	96.06	95.92
H ₃ AsO ₄ (%)	3.57	3.57	3.58	3.59	3.60	3.60	3.68	3.76	3.86	4.01
HAsO ₄ ⁻² (%)	0.10	0.10	0.10	0.10	0.10	0.10	0.09	0.09	0.08	0.07
AsO ₄ ⁻³ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table S2. Calculated As(V) species in the different arsenic solutions used in adsorption experiment using the PHREEQC code (Mintq.v4 database). The model was run at 25 °C, pH 3.5 and an ion strength of 100 mmol L⁻¹

Phases Formula		SI	Phases	Formula	SI	
Al(OH)3(am)	Al(OH)₃(am)	-5.10	Gibbsite	Al(OH) ₃	-2.59	
AI2O3	Al ₂ O ₃	-8.25	Goethite	FeOOH	3.37	
Basaluminite	Al ₄ (OH) ₁₀ SO ₄	-11.64	H-Jarosite	(H ₃ O)Fe ₃ (SO ₄) ₂ (OH) ₆	2.78	
AlAsO4:2H2O	AlAsO ₄ :2H ₂ O	-2.73	Halite	NaCl	-4.28	
AIOHSO4	AIOHSO ₄	-1.52	Hematite	Fe ₂ O ₃	9.14	
As2O5	As ₂ O ₅	-13.97	Lepidocrocite	FeOOH	2.49	
Boehmite	Alooh	-2.88	Maghemite	Fe ₂ O ₃	1.34	
Diaspore	Alooh	-1.17	Mirabilite	Na ₂ SO ₄ :10H ₂ O	-5.03	
Fe(OH)2.7Cl.3	Fe(OH) _{2.7} Cl _{0.3}	5.45	Na-Jarosite	$NaFe_3(SO_4)_2(OH)_6$	4.04	
Fe2(SO4)3	$Fe_2(SO_4)_3$	-19.90	Schwertmannite	Fe ₈ O ₈ (OH) _{4.32} (SO ₄) _{1.84}	3.66	
FeAsO4:2H2O	FeAsO ₄ :2H ₂ O	-0.17	Thenardite	Na_2SO_4	-6.45	
Ferrihydrite	Fe(OH) ₃	0.67				

Table S3. Calculated saturation index (SI) for supersaturated Fe(III)-As(V)-AI- mineral phases of reacted solution using the PHREEQC code (Mintq.v4 database). The model was run at 25 °C, pH 3.5 and with ion strength of 100 mmol L⁻¹. Bold values represent the supersaturated phases for each adsorption experiment.

Model	Laqngmuir Adsorption Isotherm							SO_4^{-2} - $H_2AsO_4^{-}$ Exchange Paramenter				
	Slope	I	ntercept	R ²	$\Gamma_{\max} (\operatorname{mol}_{As} \operatorname{mol}_{Fe}^{-2})$	Log K _L	Slope	Intercept	R ²	% Exchange		
Al-Sch _{0.00}		5.1272	0.000010	0 0.999	0.19	5 5.71	0.5333	42.239	0.986	59		
Al-Sch _{0.03}		4.2978	0.000100	0 0.995	0.23	3 4.63	0.5695	51.500	0.992	72		
Al-Sch _{0.08}		4.5233	0.000002	2 0.999	0.22	1 6.35	0.5445	46.906	0.988	68		
Al-Sch _{0.32}		3.8502	0.000020	0 0.999	0.26	0 5.28	0.4899	42.200	0.979	75		

Table S4. Fitted parameters of As(V) adsorption in schwertmannite (Sch) by Langmuir models and exchange isotherm between sulfate (SO₄⁻²) and arsenate (H₂AsO₄⁻).

Figure S1. Thermogravimetric analysis results from Al-Sch samples. The weight lost during the measurement is normalized to the initial sample weight. The dashed horizontal line indicates the average weight lost for all the solid samples.

Figure S2: Correlation between AI^{+3} contained in Al-Sch (mmol g^{-1}_{sch}) with (a) sulfate and (b) OH^{-} (mmol g^{-1}_{sch}). The solids selected for As(V) adsorption experiments are indicated with black arrows.

Figure S4: d-PDFs of arsenate onto (a) Al-Sch_{0.00} (b) Al-Sch_{0.03} (c) Al-Sch_{0.08} (d) Al-Sch_{0.32} with 1.5, 3.0, 5.0, 7.0 mmol L⁻¹ of arsenate.

Figure S5: d-PDFs of arsenate onto Al-Sch_{0.32} with 1.5, 3.0, 5.0, 7.0 mmol L⁻¹ of arsenate. Zoom in the Fe-Fe and Fe-O peaks where Al incorporation affect the intensity of these atoms' pairs.

