
Supplementary Information 
 

Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-

transport model 
Aryeh Feinberg*, Thandolwethu Dlamini, Martin Jiskra, Viral Shah, and Noelle E. Selin* 

*Correspondence to: arifein@mit.edu (A.F.); selin@mit.edu (N.E.S.) 

 

S1. Formulation of dry deposition model used in GEOS-Chem 
The dry deposition model is a resistance-based empirical model, originally presented by Wesely (1989) 

and implemented in GEOS-Chem by Wang et al. (1998). In this section, we present the key equations 

relevant to the Hg0 dry deposition scheme. 

The overall deposition velocity in a grid cell (!!) is calculated as the average of the dry 

deposition velocity of each land type (")	present in the grid cell (!!"), weighted by area fraction (%"):  
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The dry deposition velocities are calculated in a resistance-based approach, considering three 

types of resistance in series, the aerodynamic resistance (*'), the sublayer resistance (*(), and the bulk 

surface resistance (*)" ): 
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The aerodynamic resistance depends on meteorological conditions and does not vary between 

gas-phase compounds. The sublayer resistance also depends on meteorological conditions, as well as the 

diffusivity of the gas-phase compound. The algorithm to calculate the aerodynamic and sublayer 

resistances from grid scale meteorological variables can be found in the model code 

(https://github.com/arifein/offline-drydep). The bulk surface resistance is calculated as a function of in-

series and parallel resistors: 
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where -"*"  is the internal stomatal resistance, -+,"  is the cuticular resistance,	-!-"  is the aerodynamic 

resistance in the lower part of the canopy, --+"  is the lower canopy surface resistance (e.g., leaves, 

branches, and bark), -.-"  is the resistance due to canopy height and density, and -/0"  is the resistance at the 

ground surface (e.g., soil and leaf litter).  
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The internal stomatal resistance is calculated as: 

-"*" = -"*"! × 0(1) × 2(LAI" , 7, 81)
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where -"*"! 	is the minimum stomatal resistance for water vapour, 0(1) is a function depending on 

temperature,	2(LAI" , 7, 81) is a function depending on leaf area index (LAI), the solar zenith angle, and 

cloud fraction, 9 is the molecular diffusivity, :24#∗  is the Henry’s law constant of Hg0, and <624
#
 is the 

biological reactivity of Hg0. The second term in Eq. 4 represents the mesophyll resistance, which in turn 

includes two parallel pathways to the extracellular water inside leaf stomata (Wesely, 1989). One pathway 

is through direct dissolution in the aqueous solution, while the other is reaction within the leaf. Due to the 

parallel nature of this term, the mesophyll resistance will be small if either H* or f0 is large. 

The cuticular resistance is calculated as: 
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where -+,"!  is a reference cuticular resistance for the land type " which is scaled by the solubility and 

reactivity factors. The aerodynamic resistance in the lower part of the canopy is calculated as a function 

of the solar radiation (?): 

-!-" = 100	 ×	@1 + 1000
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The lower canopy surface resistance is calculated by scaling the resistances of the reference 

compounds sulfur dioxide (SO2, which is soluble yet unreactive) and ozone (O3, which is reactive yet 

insoluble) by the solubility and reactivity of Hg0: 
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The ground surface resistance is calculated in a similar manner as the lower canopy resistance: 
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To account for reduced uptake by surfaces under cold temperatures (Wesely, 1989), an additional 

resistance (-:) is calculated as a function of temperature: 

-: = 1000	 × exp(−1 − 4)															(9) 
This resistance is used to correct resistances for the ground surface, lower canopy, and cuticular surfaces, 

with the maximum effect capped to a factor of 2 times the original resistances (Jaeglé et al., 2018): 
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-/0,3$" = minM-/0,3$"∗ + -: , 2-/0,3$"∗ N															(11) 
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In addition to the temperature correction, the cuticular resistance is scaled by leaf area index: 
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S2. Validation of offline dry deposition model with online results 
The offline model (code can be found at: https://github.com/arifein/offline-drydep) for Hg0 dry deposition 

velocities is compared with online GEOS-Chem simulations to validate its use in this study. Tests were 

made at different time resolutions of the offline model to identify a suitable time resolution that balances 

computational cost of the offline simulation with accuracy for predicting online simulated deposition 

velocities (Table S1). When using daily resolution of meteorological inputs, the mean error of the offline 

model over land grid cells is 15.2%. The large error illustrates the importance of accurately capturing the 

diurnal cycle of Hg0 dry deposition. When the time resolution of the offline model is set to hourly, the 

mean error of land grid cells shrinks to 0.1%. Since we use two significant digits to report observed and 

simulated deposition velocities, we consider this error to be sufficiently small to apply the offline model 

in the current study. The offline model shows mean errors of similar relative magnitude (~0.1%) for f0 = 

10-5 (Figure S1) and f0 = 1 (Figure S2), and for January (Figure S1) and July (Figure S3).  

 

Table S1. Mean error of offline model for monthly mean Hg0 dry deposition velocities over land grid 

cells compared to online GEOS-Chem values for January and f0 = 1. Different time resolutions of input 

meteorological parameters were tested.  

Time resolution of inputs 24 h 12 h 6 h 1 h 

Mean error (%) 15.2 10.7 5.0 0.1 

 

  



 
Figure S1. Comparing January monthly mean Hg0 dry deposition velocities predicted by the (a) offline 

model for f0 = 10-5 (b) online GEOS-Chem model for f0 = 10-5. The absolute difference (offline – online) 

is shown in (c). Hourly time resolution was used for the offline model. 

 

 
Figure S2. Comparing January monthly mean Hg0 dry deposition velocities predicted by the (a) offline 

model for f0 = 1 (b) online GEOS-Chem model for f0 = 1. The absolute difference (offline – online) is 

shown in (c). Hourly time resolution was used for the offline model. 

 

 
Figure S3. Comparing July monthly mean Hg0 dry deposition velocities predicted by the (a) offline 

model for f0 = 10-5 (b) online GEOS-Chem model for f0 = 10-5. The absolute difference (offline – online) 

is shown in (c). Hourly time resolution was used for the offline model. 

 

 



S3. Effect of land-surface adjustment on dry deposition evaluation 
We follow the approach of Silva and Heald (2018) for ozone to account for the actual land category at the 

observation sites in the offline model calculations of Hg0 dry deposition velocities. In the original model 

predictions, the model grid cell can contain multiple land cover types (e.g., ocean, deciduous forest, 

coniferous forest, grassland, etc.). Our adjusted predictions use only the observed land cover part of the 

grid cell to calculate the modelled dry deposition velocity. Figure S4 presents the comparison between 

original and adjusted dry deposition velocities at the litterfall stations in the compiled database. The 

largest adjustments (factor of ~3 increase) are in grid cells that are located in coastal areas: in Norton, 

Massachusetts, USA and Mt. Damei, Zhejiang, China. Since Hg0 is relatively insoluble (0.11 M atm-1), 

water-covered areas of grid cells show much lower Hg0 dry deposition velocities than forested areas. 

Therefore, the adjustment to consider only the forested areas of the grid cell increases the Hg0 dry 

deposition velocity in coastal grid cells. The land type adjustment therefore yields a fairer comparison 

between the model and a forested observation site.  

 

 
Figure S4. Illustrating the effect of the land type adjustment on predicted offline model Hg0 dry 

deposition velocities for f0 = 10-5. Points show original model predictions for grid cells corresponding to 

litterfall measurement sites and adjusted model predictions when considering that 100% of the grid cell is 

covered by the observed forest type. 

 



Figure S5 compares the original and adjusted model predictions with the litterfall measurements 

in the compiled database. Overall, the land type adjustment leads to more uniform model predictions, 

illustrating that much of the variability in the original model predictions for f0 = 10-5 is due to variability 

in the fraction of grid box covered by forest. 

 

 
Figure S5. Comparison between measured litterfall deposition velocities and modelled Hg0 dry 

deposition velocities, without and with land type adjustment for f0 = 10-5. 

 

S4. Three-box model tuning of GEOS-Chem photoreduction 
Due to its large uncertainty, the photoreduction rate of Hg2+ in organic aerosol and clouds is used as a 

tuning parameter in the GEOS-Chem Hg simulation (Horowitz et al., 2017; Shah et al., 2021). Upon 

changes to the simulation chemical mechanism or ocean setup, the reduction rate coefficient (S) is 

adjusted to give the best overall agreement with observed atmospheric Hg concentrations. Common 

practice has been to conduct GEOS-Chem Hg simulations with S adjusted ±10% until optimum 

agreement is achieved (http://wiki.seas.harvard.edu/geos-chem/index.php/Mercury#K_RED_JNO2). 

However, this approach requires multiple tuning runs of GEOS-Chem each time a parameter is changed 

within the Hg simulation. 

 To reduce the computational expense of the tuning procedure, we use a three-box model of the 

atmospheric Hg cycle written in Python (Figure S6, see the code repository at: 

https://github.com/arifein/atm-Hg-3boxmodel). The model includes Hg0 and Hg2+ reservoirs in two 

hemispheric troposphere boxes and a global stratosphere box. Rate coefficients for the three-box model 



are based on outputted GEOS-Chem fluxes and burdens, averaged over the two hemispheres in the 

troposphere and the stratosphere.  

 

 
Figure S6. Diagram illustrating three-box model used to calibrate the reduction rate in GEOS-Chem 

simulations. Abbreviations in diagram are explained with the following — NH: Northern Hemisphere, 

SH: Southern Hemisphere, kOxSt: stratospheric oxidation, kRedSt: stratospheric reduction, kTrSt: 

troposphere to stratosphere exchange, kStTr: stratosphere to troposphere exchange, kIH: inter-

hemispheric exchange, kOxSH: oxidation in SH troposphere, kRedSH: reduction in SH troposphere, 

E0SH: emissions of Hg0 in SH, D0LSH: deposition of Hg0 to land in SH, D0SSH: deposition of Hg0 to 

sea in SH, E2SH: emissions of Hg2+ in SH, D2LSH: deposition of Hg2+ to land in SH, D2SSH: deposition 

of Hg2+ to sea in SH, kOxNH: oxidation in NH troposphere, kRedNH: reduction in NH troposphere, 

E0NH: emissions of Hg0 in NH, D0LNH: deposition of Hg0 to land in NH, D0SNH: deposition of Hg0 to 

sea in NH, E2NH: emissions of Hg2+ in NH, D2LNH: deposition of Hg2+ to land in NH, D2SNH: 

deposition of Hg2+ to sea in NH. Highlighted in red are the fluxes that change significantly between 

GEOS-Chem simulations in this study: Hg0 deposition to land and Hg2+ reduction fluxes. 

 

 

 



We illustrate our GEOS-Chem tuning procedure through an example from the current study: 

1) From the BASE simulation results, calculate the burdens and rate coefficients needed for the 

three-box model (Figure S6). 

2) In the OBRIST simulation, the dry deposition of Hg0 is enhanced, reducing the overall lifetime of 

Hg0 and the burden. Thus, the Northern Hemisphere Hg0 burden becomes too low compared to 

observations (Figure S9). We want the Northern Hemisphere Hg0 burden to be roughly equivalent 

to BASE, which matches well with the annual mean of atmospheric Hg observations (Figure S9).  

3) From the OBRIST simulation, we calculate the new rate coefficients of Hg0 dry deposition to 

land (D0SSH and D0SNH) and implement these in the box model. 

4) Using the box model, we run simulations at different tropospheric reduction rates of Hg2+ (Figure 

S7a). We identify the value of the tropospheric reduction rate (102 yr-1) needed to yield the same 

burden of Hg0 in the Northern Hemisphere as the BASE simulation. We focus on the Northern 

Hemisphere since the bulk of the atmospheric Hg measurements used to tune the model are 

located in the Northern Hemisphere (Figure S9).  

5) The actual tuning parameter in GEOS-Chem is S, the reduction rate coefficient. Using three 

previous Hg runs in GEOS-Chem, we identify a logarithmic relationship between S and the 

reduction rate in the Northern Hemisphere (Figure S7b). Using the fitted logarithmic curve, we 

find required reduction rate (102 yr-1) corresponds to S = 0.33. 

6) We run the OBRIST_R simulation with S set to 0.33. 

7) We verified that the Northern Hemisphere tropospheric Hg0 burden in the GEOS-Chem 

OBRIST_R simulation (1990 Mg) is roughly equivalent to the BASE simulation (1959 Mg). 

Also, we verified that the R2 and bias of the OBRIST_R simulation compared to benchmark 

atmospheric Hg concentrations is similar to the BASE simulation (Figure S9).  

  



 
Figure S7. (a) The relationship between the box-modelled burden of Hg0 in the Northern Hemisphere and 

the reduction rate of Hg2+ in the Northern Hemisphere troposphere, when using deposition rates 

corresponding to the OBRIST simulation. The BASE reduction rate and BASE Hg0 burden in the 

Northern Hemisphere are shown with dotted and dashed lines, respectively. The intersection between the 

blue line and the dashed line indicates the required reduction rate in the Northern Hemisphere (102 yr-1) to 

attain the same burden as BASE of Hg0 in the Northern Hemisphere. (b) The relationship between the 

GEOS-Chem reduction coefficient, S, and the tropospheric reduction rate in the Northern Hemisphere. 

Using results from three previous runs of GEOS-Chem with different S	parameters used, we fit a 

logarithmic relationship. This logarithmic relationship is used to calculate the value of S	(0.33) that would 

yield the required rate of reduction in the Northern Hemisphere (102 yr-1). 

 

S5. Alternative solutions for matching Amazon dry deposition observations 
The Hg0 dry deposition velocity in the Amazon is underestimated by BASE and OBRIST simulations, 

which use a single parameter for the Hg0 biological reactivity (f0) in the dry deposition scheme (Section 

3.1). We investigated whether the model also shows a bias in terms of ozone dry deposition velocities in 

the Amazon. In Figure S8, we compare the offline modelled ozone dry deposition velocities for 2015 with 

measurements in the Amazon from Fan et al. (1990) and Rummel et al. (2007), compiled in Silva and 

Heald (2018). The model underpredicts ozone dry deposition velocities by 39%, showing mean velocities 

of 0.49 cm s-1 compared to the observed 0.80 cm s-1. For Hg0, we compare model estimates using f0 = 3 × 

10-5 (OBRIST setting) with the mean of ten Amazon litterfall measurements compiled by Fostier et al. 

(2015). The mean modelled dry deposition velocity estimate is 0.098 cm s-1, which is 53% below the 

mean measured value of 0.21 cm s-1. Thus, the model appears to show a negative bias, of similar relative 



magnitude, for both Hg0 and ozone dry deposition in the Amazon. It is important to note, however, that 

only three measurement campaigns are available for the Amazon ozone dry deposition velocity estimate. 

 Given the similarity between both ozone and Hg0 dry deposition biases, we explored resistance 

parameter solutions that could improve model-measurement agreement for both compounds. Initial tests 

of the GEOS-Chem parametrization identified two influential parameters for the ozone dry deposition 

velocity: the internal stomatal resistance (RI, called -"*"! in Eq. 4) and the cuticular resistance (RLU, called 

-+,"∗ in Eq. 14). For the rainforest land class in GEOS-Chem, the parametrization uses RI = 200 and RLU = 

1000. Figure S8 illustrates two scenarios that match the measured mean ozone dry deposition velocity: 

when RI = 65 or when RI = 100 and RLU = 500. When these parameter combinations are used to 

calculate the mean Hg0 dry deposition velocities in the Amazon, the model predicts values of 0.12 and 

0.11 cm s-1, below the observed mean of 0.21 cm s-1. By decreasing RI to 1, the Hg0 dry deposition 

velocity (0.19 cm s-1) approaches the observed value. However, the predicted ozone dry deposition 

velocity from this parameter scenario (2.1 cm s-1) strongly overestimates the observed value (0.80 cm s-1). 

 

 

Figure S8. Comparing observed deposition velocities in the Amazon rainforest with offline model 

calculations using different estimates for internal stomatal resistance (RI) and cuticular resistance (RLU). 

Markers indicate mean value over observation locations and error bars indicate maximum and minimum 

values. Amazon ozone measurements are taken from Fan et al. (1990) and Rummel et al. (2007) and 

Amazon Hg litterfall measurements are compiled in Fostier et al. (2015). Elemental mercury dry 

deposition velocities are calculated assuming f0 = 3 × 10-5. 

 

 In conclusion, although resistance parameters can be tuned to match the Hg0 litterfall dry 

deposition velocities in the Amazon, this approach may yield unreasonable dry deposition velocities for 

other chemical compounds. Therefore, we proceeded with our approach of creating an additional 



compound-specific parameter (f0) for the Amazon rainforest region. The need for a new parameter may 

suggest that Amazon tree species take up Hg0 at a higher rate than other trees, which would not be 

surprising given inter-species differences in Hg0 uptake found in a European study (Wohlgemuth et al., 

2022). Additional Hg0 uptake measurements in the Amazon region would be needed to assess whether a 

species-specific vegetation uptake scheme could be applied in GEOS-Chem. Ongoing improvements to 

model dry deposition schemes (e.g., Clifton et al., 2020; Lin et al., 2019) may require future retuning of 

the Hg0 biological reactivity to available vegetation uptake measurements. 

 

S6. Additional model evaluation plots and table 
Additional comparisons between simulations and observations are shown in Figure S9 for global surface 

TGM concentrations, Figure S10 for the overall global wet deposition comparison, Figure S11 for North 

American Hg wet deposition, and Figure S12 for European wet deposition. Table S2 lists the global Hg 

burdens and major fluxes for all simulations. 

 

  



 
Figure S9. Comparing surface total gaseous mercury (TGM) concentrations from GEOS-Chem 

simulations with available observation stations. Measured atmospheric Hg concentrations are sourced 

from compilations (AMAP/UN Environment, 2019; Travnikov et al., 2017) and are courtesy of Hélène 

Angot. Model simulations are based on year 2015 and observations are averaged over 2013–2015. 

Statistics on right hand side of plots show the global summary of the coefficient of determination (R2) and 

the mean and standard deviation of model and observations. 



 
Figure S10. Comparing global Hg wet deposition fluxes from GEOS-Chem simulations with 

observations compiled by Shah et al. (2021) from measurements in Travnikov et al. (2017), Sprovieri et 

al. (2017), AMAP/UN Environment (2019), and Fu et al. (2016). Model simulations are for year 2015 and 

observations are for year 2010–2015. Statistics on right hand side of plots show the summary of the 

coefficient of determination (R2) and the mean and standard deviation of model and observations. Due to 

site density in North America and Europe, additional plots are provided zoomed into those regions 

(Figures S11 and S12). 



 
Figure S11. Comparing Hg wet deposition fluxes from GEOS-Chem simulations with available 

observation stations in continental USA from the Mercury Deposition Network (MDN, 

https://nadp.slh.wisc.edu/networks/mercury-deposition-network/). Observations were compiled 

Travnikov et al. (2017), courtesy of Hélène Angot. Model simulations and observations are both for the 

year 2015. Statistics on right hand side of plots show the summary of the coefficient of determination (R2) 

and the mean and standard deviation of model and observations. 



 
Figure S12. Comparing Hg wet deposition fluxes from GEOS-Chem simulations with available 

observation stations in Europe from the EMEP network (Tørseth et al., 2012). Observations were 

compiled Travnikov et al. (2017), courtesy of Hélène Angot.  Model simulations are based on year 2015 

and observations are averaged over 2013–2015. Statistics on right hand side of plots show the summary 

of the coefficient of determination (R2) and the mean and standard deviation of model and observations. 

 



Table S2. Global atmospheric Hg fluxes and burdens predicted by GEOS-Chem simulations. 

Simulation 

Hg0 

burden 

(Mg) 

Hg2+ 

burden 

(Mg) 

Hg0 landa 

emissions 

(Mg yr-1) 

Hg2+ landa 

emissions  

(Mg yr-1) 

Hg0 net 

ocean 

emissions 

(Mg yr-1) 

Hg0 land 

deposition  

(Mg yr-1) 

Hg2+ land 

deposition 

(Mg yr-1) 

Hg2+ ocean 

deposition 

(Mg yr-1) 

Hg0 

oxidation 

(Mg yr-1) 

Hg2+ 

reduction 

(Mg yr-1) 

BASE 3649 812 3523 400 3225 1200 1069 4825 17675 12150 

OBRIST 3348 776 3509 400 3343 1786 985 4471 16245 11175 

OBRIST_R 3816 782 3493 400 3140 1961 824 4178 18527 13878 

AMAZON_L 3717 775 3491 400 3162 2067 812 4112 18237 13669 

AMAZON_U 3605 762 3486 400 3204 2276 790 3986 18160 13267 

NEWCHEM 4770 392 3548 400 2903 1298 1199 4438 18752 13206 

NEWCHEM_D 4492 342 3505 400 2996 2392 887 3770 17650 13075 
a Refers to emissions from land areas, including the following sources: geogenic, soil, land re-emissions, snow, and anthropogenic activities



S7. Influence of meteorological year on modelled deposition 
To test the sensitivity of our offline dry deposition results to the choice of year for the meteorological and 

LAI data, we ran the offline model under the AMAZON_U scenario using data from three different years 

(2014–2016). The median model predictions for the different datasets do not show substantial changes 

between the three meteorological years. Due to these sensitivity tests, we have used a single simulation 

year (2015), since comparable input data for leaf area input is not available over the entire observational 

time period. This result agrees with other studies that have determined GEOS-Chem modelled ozone dry 

deposition variability due to meteorology to be generally small (<5%, Silva and Heald, 2018). However, 

the simulated dry deposition variability has been found to be smaller than observed dry deposition 

variability, which could be due to the lack of moisture availability as a limiting factor in the dry 

deposition scheme (Clifton et al., 2020; Lin et al., 2019). 

 

 
Figure S13. The impact of the meteorological and LAI year on the comparison between observed and 

simulated dry deposition velocities in the AMAZON_U case. Individual site measurements are indicated 

with filled circles and overall medians of measurement types are indicated with filled stars. Error bars 

show the interquartile range of measurements over different measurement locations. Model interquartile 

ranges are generally smaller than the size of the markers.  
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