Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supplementary Information for

Metal (hydr)oxide surface precipitates and their effects on potassium sorption

Author names and affiliations

Thanh Quang Pham ^{a, b}, Aakriti Sharma ^{a**}, Katherine Coyle ^{a, c}, Katie Lewis ^a, Matthew G. Siebecker ^{a*}

Email: thanh.pham@ttu.edu, aakrisha@ttu.edu, katherine.coyle@ttu.edu, katie.lewis@ttu.edu, matthew.siebecker@ttu.edu.

^a Department of Plant and Soil Science, Texas Tech University, 2911 15th Street, Suite 122, Lubbock, TX 79409, USA.

^b Department of Chemical Engineering, Texas Tech University, P.O. Box 43121, Lubbock, Texas, 79409, USA.

^c Department of Geosciences, Texas Tech University, 1200 Memorial Circle, Lubbock, Texas 79409, USA.

*Corresponding author

Matthew G. Siebecker, Email: <u>matthew.siebecker@ttu.edu</u>, Phone: +1 (806) 834-0266. FAX: +1 (806) 742-0775

****Co-corresponding author**

Aakriti Sharma, Email: aakrisha@ttu.edu, Phone: +1 (919) 916-7626

Table of Contents

- Table S1 Tabulation of energy values (positions) of different XANES spectral features of analyzed samples. No significant features could be observed in the pre-edge region (3600-3608 eV) of any samples.
- **Figure S1** Transmission Electron Microscopy (TEM) images of non-reacted silicon (S1a) and gamma aluminum oxide (S1b and S1c). S1b is an overview of γ -Al₂O₃. Figure S1c indicates the crystalline nature of γ -Al₂O₃ via the presence of lattice fringes (dspacing = 4.6 Å). The lattice fringe measurement of 2.3 nm is for 5 lattice fringes.
- Figure S2 An overview (S2a) and high resolution (S2b) Transmission Electron Microscopy (TEM) images from gamma aluminum oxide reacted with zinc for one month (AlZn1M). The d-spacing value of the lattice fringes in the darker regions was found to be 2.5 and 2.6 Å, which corresponds to that of zaccagnaite. The different d-spacing value that corresponds to y-Al₂O₃ are 4.58, 2.8, and 2.39.
- Figure S3 Transmission Electron Microscopy (TEM) images from the mixed mineral systems γ-Al₂O₃ and SiO₂ reacted with zinc for one month (SiAlZn1M). Figure S3a is an overview image. Figures S3b and S3c are high resolution.
- **Figure S4** Energy-dispersive X-ray (EDX) spectra obtained from AlZn1M from select regions of y-Al₂O₃, zaccagnaite, empty space, and the Lacey support.
- **Figure S5** Energy-dispersive X-ray (EDX) spectra obtained from AlZn1M from select regions of y-Al₂O₃, SiO₂, and zaccagnaite-rich regions.

Table S1: Tabulation of energy values (positions) of different XANES spectral features of
analyzed samples. No significant features could be observed in the pre-edge region (3600-3608
eV) of any samples.

		Edge (3608 – 3616 eV)		White line peak position (3614 – 3617 eV)	Post-edge (3617 – 3660 eV)				
	Sample ID	1st shoulder	2nd shoulder	Peak	First valley	Peak	Second valley	Shoulder	Peak
1	SiAlNi1M	subtle (3610.9)	distinct (3613)	sharp (3616)	-	-	-	distinct (3636.4)	broad (3644.6)
2	SiAlZn1M	subtle (3610.9)	distinct (3613)	sharp (3616)	-	-	-	distinct (3636.4)	broad (3644.3)
3	SiAlMg1W	distinct (3610.8)	subtle (3613.7)	sharp (3616)	-	-	-	distinct (3636.4)	broad (3646.5)
4	SiAlMg1M	distinct (3610.8)	subtle (3613.7)	sharp (3616)	-	-	-	subtle (3636.4)	broad (3645.3)
5	SiAl1W	distinct (3610.8)	distinct (3613.6)	round (3616)	-	-	-	subtle (3636.4)	broad (3644.9)
6	SiAl1M	subtle (3610.8)	distinct (3613.6)	round (3616)	-	-	-	distinct (3636.4)	broad (3645.4)
7	SiNi1M	distinct (3610.8)	subtle (3613)	sharp (3616)	-	-	-	distinct (3636.4)	broad (3645.6)
8	SiZn1M	distinct (3610.8)	subtle (3614)	round (3616)	-	-	-	distinct (3636.4)	broad (3645.1)
9	SiMg1W	distinct (3610.8)	subtle (3614)	round (3616)	-	-	-	distinct (3636.4)	broad (3645.9)
10	SiMg1M	distinct (3610.8)	distinct (3614)	sharp (3616)	-	-	-	distinct (3636.4)	broad (3645.4)
11	AlNi1M	subtle (3610.4)	subtle (3612.2)	round (3615.4)	shallow (3625.4)	subtle, broad (3628.4)	shallow (3632.4)	distinct (3636.4)	broad (3643.6)
12	AlZn1M	subtle (3610.5)	-	sharp (3615.4)	deep (3624.5)	broad (3628.4)	deep (3632.4)	subtle (3636.4)	broad (3643.6)
13	AlMg1W	subtle (3610.4)	-	round (3616)	-	subtle, broad (3628.4)	-	subtle (3636.4)	broad (3643.4)
14	AlMg1M	subtle (3610.7)	-	sharp (3615.4)	deep (3624.5)	sharp (3628.4)	deep (3632.4)	subtle (3636.4)	broad (3643.4)

Figure S1. Transmission Electron Microscopy (TEM) images of non-reacted silicon (S1a) and gamma aluminum oxide (S1b and S1c). S1b is an overview of γ -Al₂O₃. Figure S1c indicates the crystalline nature of γ -Al₂O₃ via the presence of lattice fringes (d-spacing = 4.6 Å). The lattice fringe measurement of 2.3 nm is for 5 lattice fringes.

S1a) SiO₂ non-reacted

S1b) Al₂O₃ non-reacted

S1c) Al₂O₃ non-reacted

Figure S2. An overview (S2a) and high resolution (S2b) Transmission Electron Microscopy (TEM) images from gamma aluminum oxide reacted with zinc for one month (AlZn1M). The d-spacing value of the lattice fringes in the darker regions was found to be 2.5 and 2.6 Å, which corresponds to that of zaccagnaite. The different d-spacing value that corresponds to γ -Al₂O₃ are 4.58, 2.8, and 2.39.

6

Figure S3: Transmission Electron Microscopy (TEM) images from the mixed mineral systems γ -Al₂O₃ and SiO₂ reacted with zinc for one month (SiAlZn1M). (S3a) is an overview image; (S3b) and (S3c) are high resolution images.

S3b.)

Figure S5. Energy-dispersive X-ray (EDX) spectra obtained from AlZn1M from select regions of y-Al₂O₃, SiO₂, and zaccagnaite-rich regions.

