Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supporting information for

Investigating the dynamics of methylmercury bioaccumulation in the Beaufort Sea Shelf food web: a modeling perspective

1. Calculations of model parameters

- 1.1. Direct absorption rate (DAR) of MeHg from seawater
- Primary producers

$$U = t \frac{0.118S_A}{V} e^{-0.008DOC}$$

Eq.1 from Schartup et al. 2017¹
DAR_P = U * C_W/C_W Eq.2

Parameter	Units	Description	Equation or value
DAR _P	km ² ·t ⁻¹ ·year ⁻¹	Direct uptake rate of producers	Calculated based on Eq.2
C _w	pg L ⁻¹	Seawater concentration	53 ²
Cw	t·km ⁻²	Unit converted seawater concentration assuming 200m depth of Beaufort Sea	0.0000106
U	amol µm ⁻³ nM	Empirical relationship between net MeHg uptake rate and cell surface to volume ratio	Calculated based on Eq.1
t	hour	Uptake time to reach equilibrium between cells and seawater	4 hours ¹
S _A /V	μm ⁻¹	Assumed surface area to volume ratio of model species of interest (spherical)	S _A /V = 3/r
r	μm	Radius of cell	 r = 1 and 10 for small and large phytoplankton groups, respectively. r= 4 and 20 for ice algae (e.g., N. frigida³) and benthic plants, respectively.
DOC	μΜ	Dissolved organic carbon concentration in seawater	120 μM ⁴

• Zooplankton

$$DAR_{Z00} = A_{EW} \frac{F}{M_Z} C_W / C_W'$$

F = 1.777 \cdot e^{0.234T} \cdot (0.002 \cdot M_c)^{0.681e^{0.0199T}} \cdot 0.024

Eq.3 modified from Schartup et al. 2017¹

Eq.4 ⁵

Parameter	Units	Description	Equation or value
DAR _{zoo}	km ² ·t ⁻¹ ·year ⁻¹	Direct uptake rate of zooplankton	Calculated based on Eq.3
A _{EW}	unitless	Absorption efficiency from seawater	$(1.87 + \frac{155}{K_{OW}})^{-1}$
C _w	pg L⁻¹	Seawater concentration	53 ²
Cw	t·km ⁻²	Unit converted seawater concentration assuming 200m depth of Beaufort Sea	0.0000106
F	L d ⁻¹	Clearance rate	Calculated based on Eq.4
K _{ow}	unitless	Octanol-water partition coefficient for CH ₃ HgCl	1.7 6
Mz	g	Zooplankton mass (wet)	17.2 for macro-zooplankton; 0.00052 for medium copepod; 0.03 for large copepods; 0.0042 for other meso-zooplankton; and 0.0000082 for micro-zooplankton, based on Schartup et al. 2017 ¹
M _C	μg C	Zooplankton mass (wet)	$M_C = M_Z \cdot 10^5$
Т	°C	Seawater temperature	Assumed 1°C

Bivalves

We derived a linear relationship between MeHg absorption rate and filtration rate based on experimental results of various bivalves species at room temperature (see figure below, data from Pan and Wang 2011⁷). Using this relationship, we estimated that the theoretical direct absorption rate (K_u) of Arctic bivalves is 4.7 to 17.0 L/day/g d.w. (0.94 to 3.4 L/day/g w.w., assuming 80% moisture content) at room temperature, based on their filtration rate 5-18ml/min/g⁸. Tsui and Wang 2004⁷ showed a strong temperature effect on K_u of *D. magma* and the MeHg uptake rates at lower temperature (14°C) are about three times lower than that at 24 °C given the same filtration rate. We thus consider the K_u for Arctic bivalves at ~1 °C is least three time lower than that is room temperature. Thus we adjusted final K_u for Arctic bivalves as 0.3 to 1.1 L/day/g w.w.

$$DAR_{BV} = A_{EW}K_{u}C_{W}/C_{W}$$

Eq.5

Parameter	Units	Description	Equation or value
DAR _{BV}	km²·t ⁻¹ ·year ⁻¹	Direct absorption rate of bivalves	Calculated based on Eq.5
A _{EW}	unitless	Absorption efficiency from seawater	0.5 7
K _u	L/hour/g w.w.	Empirically derived MeHg absorption rate	0.3 to 1.1
C _W	pg L ⁻¹	Seawater concentration	53 ²
C _w '	t∙km²	Unit converted seawater concentration assuming 200m depth of Beaufort Sea	0.0000106

1.2. Elimination rate (K_E)

• Zooplankton

 $K_E = 0.00335 M_Z^{-0.195} \cdot e^{(0.0066T)}$ Eq.5 from Schartup et al. 2017 ¹ where K_E is the elimination rate (per day), M_Z is the zooplankton biomass (see table above for details), and T is temperature 1°C.

• Fish

 $ln^{m}(K_E) = 0.066T - 0.2lnW - 5.83$

Eq.6 from Trudel et al. 1997 9

where T is temperature (1 °C) and W is fish weight (g) that we obtained by searching common weight of typical species of each functional group on fishbase¹⁰.

Functional group	Typical species	W (g)	Ln(K _E)	K _E (day⁻¹)	K _E (year ⁻¹)
Char & Dolly Varden	arctic char	518	-7.014	0.0009	0.328
Ciscos & Whitefish	cisco	298	-6.903	0.0010	0.367
Salmonids	arctic grayling	311	-6.912	0.0010	0.363
Small Nearshore Forage Fish	pacific herring	160	-6.779	0.0011	0.415
Arctic & Polar Cods	arctic cod	107	-6.699	0.0012	0.450
Capelin	capelin	19	-6.353	0.0017	0.636
Flounder & Benthic Cods	starry flounder	2990	-7.365	0.0006	0.231
Small Benthic marine Fish	saffron cod				
Other fish	(30cm)	225	-6.847	0.0011	0.388

Table S1. Modeled and literature values of the MeHg concentrations (μ g/g wet weight) in Beaufort Sea, supplemented by trophic level (TL), production-biomass ratio (P/B; an indicator for population turnover rate), and description of major species in each functional group. The model simulates steady-state MeHg concentration in each group in early 2010s.

Functional group	Typical species or family ^a	TL	P/B	Modeled	Avg. Obs.	M/O	Normali	Obs.	SE	Notes and data
				conc.	conc.	ratio ^b	zed	conc. ^c		sources
							mean			
Beluga	Eastern Beaufort Sea Beluga	4.25	0.05	2.1E+00	1.2E+00	1.7	0.7	1.4E+00	1.5E-01	Collected in 2005 ¹¹
	stock (Delphinapterus leucas)							1.3E+00	1.1E-01	Collected in 2006 ¹¹
								1.2E+00	1.5E-01	Collected in 2007 ¹¹
								1.2E+00	1.3E-01	Collected in 2008 ¹¹
								9.7E-01	1.5E-01	Collected in 2009 ¹¹
								1.1E+00	1.4E-01	Collected in 2010 ¹¹
								1.2E+00	1.5E-01	Collected in 2011 ¹¹
								1.3E+00	1.3E-01	Collected in 2012 ¹¹
Bowhead	Bering-Chukchi-Beaufort Bowhead stock (Balaena mysticetus)	3.37	0.02	2.3E-02	2.0E-02	1.2	0.2	2.0E-02	NA	collected in 2002- 2003, Barrow, Alaska ¹²
Ringed Seal	Pusa hispida hispida	3.87	0.50	2.7E-01	3.7E-01	0.8	-0.2	2.1E-01	5.0E-02	Collected in 2005 ¹³
								5.2E-01	1.4E-01	Collected in 2010 ¹³
Bearded Seal	Erignathus barbatus	3.84	0.20	5.7E-01				NA	NA	
Char & Dolly Varden	Arctic char and dolly varden	3.64	0.71	3.2E-02	7.5E-02	0.4	-0.6	7.5E-02	4.8E-02 ^d	Collected in Shingle point, Yukon ¹⁴
Ciscos & Whitefish	Various species in coregonids: arctic cisco, least cisco, and	3.25	0.95	1.6E-02	2.3E-02	0.7	-0.3	2.0E-02	6.0E-03	Arctic cisco ¹⁵
	lake, broad and round whitefish							2.5E-02	1.8E-03	Least cisco ¹⁵
Salmonids	Arctic grayling and Inconnu	3.59	0.85	8.6E-02	NA	NA	NA	NA	NA	
Small Nearshore	Pacific herring, northern and	3.12	1.5	1.1E-02	2.7E-02	0.4	-0.6	3.3E-02	1.8E-03	Rainbow smelt ¹⁵
FUIAge FISH	smelt.							2.2E-02	6.0E-04	Pacific herring ¹⁵
Arctic & Polar Cods	Arctic cod and polar Cod	3.50	0.81	2.7E-02	3.2E-02	0.9	-0.1	3.2E-02	1.6E-03	Arctic cod ¹⁵

Capelin	Capelin	3.50	0.97	2.3E-02	NA	NA	NA	NA	NA	
Flounder &	Starry flounder, arctic	3.36	0.76	2.9E-02	4.9E-02	0.6	-0.4	4.6E-02	1.8E-02	Starry flounder ¹⁵
Benthic Cods	flounder, bering flounder,							4.7E-02	1.1E-02	Arctic Flounder ¹⁵
	greenland cod							5.5E-02	1.6E-03	Saffron cod ¹⁵
Small Benthic Marine fish	sculpins and zoarcids, with fourhorn sculpin most common	3.20	1.07	2.4E-02	1.1E-01	0.2	-0.8	1.1E-01	9.2E-03	Fourhorn sculpin ¹⁵
Other Fish	Arctic lamprey, threespine and niniespine stickleback, longnose sucker, northern pike	3.08	0.53	1.7E-02	NA	NA	NA	NA	NA	
Arthropods	Amphipoda, Isopoda, Decapoda, Pycnogonida, and	2.22	0.76	2.0E-02	1.8E-01	0.1	-0.9	3.2E-02	1.7E-02	Acanthostepethia & Anonyx spp ¹⁵
	Maxillopoda							3.3E-01	3.7E-02	S. ferox ¹⁶
Bivalves	Bivalvia	2	0.61	5.31E-03	NA	NA	NA	NA	NA	
Echinoderms	Ophiuroidea, Asteroidea, Holothuroidea, Echinoidea, and Crinoidea	2.23	0.55	9.1E-03	NA	NA	NA	NA	NA	
Mollusks	All mollusks except bivalves:	2.00		4.0E-03	9.1E-03	0.4	-0.6	3.8E-03	1.4E-03 d	Limacina helicina ¹⁷
	Gastropods, Polyplacophora, Scaphopoda, Cephalopod, and Caudofovaeta		0.86					1.4E-02	9.0E-03 ^d	Clione limacine ¹⁷
Worms	All worms from various phyla: primarily Annelids (segmented worms: Polychaetes and Ciltellata), but also from Entoprocta, Nematoda, Nemertea, and Priapulida	2.07	0.96	5.1E-03	1.0E-02	0.5	-0.5	1.0E-02	5.6E-03	A.malmgremi
Other Benthos	Cnidarians (Anthozoa: sea anemones and Hydrozoa), Ascidiacea, brachiopods, and bryozoa	2.08	0.76	6.9E-03	NA	NA	NA	NA	NA	
Jellyfish	ctenophores, cnidarians (Scyphozoa, Hydrozoa), and larvaceans	2.34	23.59	7.1E-04	NA	NA	NA	NA	NA	
Macro-	size>20mm: including krill,	2.69	9.36	1.8E-03	2.1E-02	0.1	-0.9	6.4E-03	2.6E-03	Mysids ¹⁵
Zooplankton	shrimp, mysids, amphipods,							3.2E-03	1.8E-03 ^d	Thysanoessa spp. ¹⁷

	and chaetognaths							3.8E-03	1.6E-03 ^d	Parasagitta spp. ¹⁷
								1.3E-02	4.0E-04	T.Libellula ¹⁵
								1.8E-02	8.0E-04	chaetognaths ¹⁸
								6.5E-02	1.0E-02	Eualus gaimardiil ¹⁶
								4.6E-02	5.2E-03	Eualus spp.15
								1.2E-02	5.2E-03 ^d	Themisto spp. ¹⁷
Medium Copepods	medium sized copepod species: <i>Pseudocalanus spp.,</i> <i>O. simils, and L. macrurus</i>	2.14	20.76	5.5E-04	NA	NA	NA	NA	NA	
Large Copepods	C. hyperboreus, C. glacialis and M. longa	2.38	5.8	1.2E-03	1.5E-03	0.8	-0.2	1.8E-03	8.0E-04 ^d	C. hyperboreus & C. glacialis ¹⁷
								1.4E-03	2.0E-04	Calanus spp. ¹⁵
								1.4E-03	2.0E-04 ^d	C. hyperboreus & C. glacialis ¹⁹
								1.4E-03	2.0E-04 ^d	C. hyperoboreus ¹⁸
Other Meso- Zooplankton	Size 0.2-20mm: C. glacialis, C. hyperboreus, M. longa, and Pseudocalanus spp	2.36	26.29	7.1E-04	8.5E-04	0.8	-0.2	8.5E-04	3.9E-04 ^d	Zooplankton > 0.153 mm ²⁰
Micro- Zooplankton	Zooplankton with size <0.2mm	2.00	61.94	6.0E-04	8.5E-04	0.7	-0.3	8.5E-04	3.9E-04 ^d	Zooplankton > 0.153 mm ²⁰
Large Phytoplankton	Phytoplankton with size> 5 μm	1.00	42.33	6.0E-05	1.2E-04	0.5	-0.5	1.2E-04	1.1E-04 ^d	Phytoplankton >20 μm ²⁰
Small Phytoplankton	Phytoplankton with size < 5 μm	1.00	83.86	3.0E-04	NA	NA	NA	NA	NA	
Ice Algae	living organisms that are frozen into sea ice	1.00	36.28	1.8E-04	NA	NA	NA	NA	NA	
Benthic Plants	Arctic kelp	1.00	10.00	1.3E-04	NA	NA	NA	NA	NA	
Pelagic detritus				3.4E-04						
Benthic detritus				2.6E-04						

^{a.} Details can be found in Ehrman et al 2021²¹ and Hoover et al. 2021.²²

^{b.} The ratio of Modeled concentration to average observed concentration.

Literature values from each study were selected based on available MeHg data in the Beaufort Sea coastal region. If the dry weight-based concentration was provided, it is converted to wet weight based concentration, assuming 80% moisture content in the sample.
 Concentration of fish and marine mammal are from analyses of their muscle tissues. We choose the total Hg data between 2005 and 2015 for species that have temporal trends of Hg (ringed seal and beluga), and assume 100% Hg in muscle tissue is MeHg in these mammals.

^{d.} Only standard deviation was reported.

Table S2. Sensitivity coefficients of toxicokinetic input parameters (DAR - direct absorption rate, K_E -elimination rate, AE - assimilation efficiency). The sensitivity analysis was conducted by increasing (+) or decreasing (-) 10% of the input parameter. If the absolute value of sensitivity coefficient <0.01, it is illustrated as 0, which indicates that the MeHg concentration in the specified functional group is not sensitive to the parameter change. The further the sensitivity coefficient is from 0, the higher the sensitivity coefficient is of the MeHg concentration in the specified functional group.

		DAR					ŀ	K _E AE								
	Bentho	S	zooplar	nkton	produc	ers	Mamm	als	Mamm	als	Fish		Bentho	S	Zoopla	nkton
Groups	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)
Beluga	0.72	0.71	0.08	0.07	0.18	0.18	-0.61	-0.7	0.18	0.17	0.36	0.34	0.12	0.11	0.12	0.1
Bowhead	0.02	0	0.39	0.38	0.59	0.58	-0.74	-0.89	0.18	0.17	0.01	-0.01	0.01	-0.01	0.51	0.47
Ringed seal	0.79	0.76	0.07	0.04	0.18	0.14	-0.31	-0.36	0.19	0.16	0.29	0.26	0.14	0.11	0.09	0.06
Bearded seal	0.82	0.81	0.04	0.03	0.14	0.12	-0.52	-0.59	0.18	0.17	0.25	0.24	0.13	0.12	0.06	0.05
Char & dolly varden	0.80	0.78	0.06	0.04	0.16	0.13	0.01	-0.01	0.01	-0.01	0.39	0.35	0.14	0.11	0.08	0.05
Ciscos & whitefish	0.75	0.71	0.1	0.05	0.19	0.16	0.02	-0.02	0.02	-0.02	0.29	0.24	0.14	0.09	0.13	0.08
Salmonids	0.79	0.78	0.06	0.05	0.15	0.14	0	-0.01	0	0	0.39	0.36	0.12	0.11	0.08	0.07
Small Nearshore Forage Fish	0.70	0.70	0.08	0.08	0.18	0.2	0	0	0	0	0.3	0.29	0.12	0.11	0.13	0.11
Arctic & polar cods	0.70	0.68	0.1	0.08	0.22	0.19	0.01	-0.01	0.01	-0.01	0.42	0.39	0.12	0.1	0.14	0.11
Capelin	0.71	0.67	0.11	0.07	0.21	0.19	0.02	-0.02	0.02	-0.02	0.43	0.38	0.13	0.09	0.14	0.1
Flounder and benthic cods	0.86	0.83	0.04	0.01	0.14	0.1	0.01	-0.01	0.01	-0.01	0.3	0.27	0.15	0.12	0.05	0.02
Small benthic marine fish	0.87	0.85	0.03	0.01	0.12	0.09	0.01	-0.01	0.01	-0.01	0.23	0.21	0.15	0.13	0.04	0.02
Other fish	0.78	0.77	0.06	0.05	0.17	0.15	0.01	-0.01	0.01	-0.01	0.18	0.17	0.12	0.11	0.08	0.06
Arthropods	0.9	0.94	-0.02	0.02	0.05	0.08	-0.02	0.02	-0.02	0.02	-0.02	0.02	0.09	0.12	-0.02	0.02
Bivalves	0.89	0.87	0.01	-0.01	0.11	0.09	0.01	-0.01	0.01	-0.01	0.01	-0.01	0.08	0.06	0.01	-0.01
Echinoderms	0.9	0.91	0	0	0.08	0.08	0	0	0	0	0	0	0.29	0.29	0	0.01

Mollusks	0.82	0.84	0	0.02	0.13	0.15	-0.01	0.01	-0.01	0.01	-0.01	0.01	0.09	0.11	0	0.02
Worms	0.83	0.84	0	0.01	0.14	0.15	-0.01	0.01	-0.01	0.01	-0.01	0.01	0.28	0.28	0	0.02
Other benthos	0.84	0.84	0.01	0.01	0.13	0.13	0	0	0	0	0	0	0.14	0.14	0.01	0.01
Jellyfishes	0.02	0	0.25	0.23	0.74	0.73	0	-0.01	0.01	-0.01	0.01	0	0.01	0	0.5	0.47
Macro zooplankton	0	0.03	0.32	0.35	0.61	0.65	-0.02	0.01	-0.01	0.02	-0.01	0.02	-0.01	0.02	0.66	0.65
Medium copepods	0.02	0	0.45	0.43	0.55	0.53	0.01	-0.01	0.01	-0.01	0.01	-0.01	0.01	-0.01	0.61	0.57
Large copepods	0.03	-0.02	0.42	0.37	0.59	0.56	0.02	-0.03	0.02	-0.02	0.03	-0.02	0.03	-0.02	0.44	0.38
Other meso zooplankton	0.01	0.01	0.35	0.34	0.63	0.63	0	-0.01	0	0	0	0	0	0	0.91	0.86
Micro zooplankton	0.01	0	0.39	0.39	0.59	0.59	0	0	0	0	0	0	0	0	0.42	0.42
Large Pelagic Producers	0	0	0	-0.01	0.98	0.99	0	0	0	0	0	0	0	0	0	-0.01
Small Pelagic Producers	-0.01	0.01	-0.02	0.01	0.97	1	-0.01	0.01	-0.01	0.01	-0.01	0.01	-0.01	0.01	-0.02	0
Ice algae	-0.02	0.02	-0.02	0.01	0.98	1.01	-0.02	0.02	-0.02	0.02	-0.02	0.02	-0.02	0.02	-0.03	0.01
Benthic plants	0	0	-0.01	0	0.98	0.99	0	0	0	0	0	0	0	0	-0.01	0
Pelagic detritus	0.05	0.07	0.17	0.2	0.74	0.75	-0.03	-0.01	-0.01	0.02	0.01	0.04	0	0.02	0.25	0.27
Benthic detritus	0.04	0.05	-0.01	0	0.94	0.94	0	0	0	0	0	0	0.01	0.01	-0.01	0

Table S3. Comparison of MeHg concentrations (μ g/g wet weight) in beluga prey species from Beaufort Sea vs. Bering/Chukchi Sea. Only samples collected within the wintering range of beluga in Bering and Chukchi Sea are chosen (i.e., north of St Matthew Island, Alaska).

	Beaufor	t Sea ª	Bering/Ch	ukchi Sea ^ь	
Species	Mean conc.	SE	Mean conc.	SE	Ratio between Beaufort and Bering/Chukchi Sea
Starry flounder	5.54E-02	1.46E-02	2.8E-02	2.1E-02	2.0
Arctic Flounder	5.10E-02	8.80E-03	2.0E-02	2.0E-03	2.6
Saffron cod	6.16E-02	5.80E-03	2.3E-02	8.0E-03	2.7
Fourhorn Sculpin	1.17E-01	1.52E-02	5.1E-02	2.2E-02	2.3
Arctic cod	3.26E-02	5.80E-03	1.5E-02	3.2E-03	2.1

a. Data are from Loseto et al. 2008 ²³.

b. Data are from State of Alaska Department of Environmental Conservation Fish Monitoring Program <u>https://dec.alaska.gov/eh/vet/fish-monitoring-program/fish-tissue-mercury.aspx.html</u> except for Arctic cod, of which data is published in Fox et al. 2017²⁴.

References

- Schartup, A. T.; Qureshi, A.; Dassuncao, C.; Thackray, C. P.; Harding, G.; Sunderland, E. M. A Model for Methylmercury Uptake and Trophic Transfer by Marine Plankton. *Environ. Sci. Technol.* 2017, *52* (2), 654–662.
- (2) Lehnherr, I.; Louis, V. L. S.; Hintelmann, H.; Kirk, J. L.; St Louis, V. L.; Hintelmann, H.; Kirk, J. L. Methylation of Inorganic Mercury in Polar Marine Waters. *Nat. Geosci.* **2011**, *4* (5), 298–302. https://doi.org/10.1038/ngeo1134.
- Nadaï, G.; Nöthig, E. M.; Fortier, L.; Lalande, C. Early Snowmelt and Sea Ice Breakup Enhance Algal Export in the Beaufort Sea. *Prog. Oceanogr.* 2021, *190*, 102479. https://doi.org/10.1016/j.pocean.2020.102479.
- Osburn, C. L.; Retamal, L.; Vincent, W. F. Photoreactivity of Chromophoric Dissolved Organic Matter Transported by the Mackenzie River to the Beaufort Sea. *Mar. Chem.* 2009, *115* (1–2), 10–20. https://doi.org/10.1016/j.marchem.2009.05.003.
- (5) Huntley, M.; Boyd, C. Food-Limited Growth of Marine Zooplankton. https://doi.org/10.1086/284288 2015, 124 (4), 455–478. https://doi.org/10.1086/284288.
- (6) Mason, R. P.; Reinfelder, J. R.; Morel, F. M. M. Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. *Environ. Sci. Technol.* **1996**, *30* (6), 1835–1845.
- Pan, K.; Wang, W. X. Mercury Accumulation in Marine Bivalves: Influences of Biodynamics and Feeding Niche. *Environ. Pollut.* 2011, 159 (10), 2500–2506. https://doi.org/10.1016/J.ENVPOL.2011.06.029.
- (8) Petersen, J. K.; Sejr, M. K.; Larsen, J. E. N. Clearance Rates in the Arctic Bivalves Hiatella Arctica and Mya Sp. *Polar Biol.* **2003**, *26* (5), 334–341. https://doi.org/10.1007/s00300-003-0483-2.
- (9) Trudel, M.; Rasmussen, J. B. Modeling the Elimination of Mercury by Fish. *Environ. Sci. Technol.* **1997**, *31* (6), 1716–1722.
- (10) Froese, R.; Pauly, D. FishBase. World Wide Web electronic publication 2015.
- (11) Loseto, L. L.; Stern, G. A.; Macdonald, R. W. Distant Drivers or Local Signals: Where Do Mercury Trends in Western Arctic Belugas Originate? *Sci. Total Environ.* **2015**, *509*, 226–236.
- (12) O'Hara, T. M.; Hanns, C.; Bratton, G.; Taylor, R.; Woshner, V. M. Essential and Non-Essential Elements in Eight Tissue Types from Subsistence-Hunted Bowhead Whale: Nutritional and Toxicological Assessment. *Int. J. Circumpolar Health* **2006**, *65* (3), 228–242. https://doi.org/10.3402/IJCH.V65I3.18108.
- (13) Houde, M.; Taranu, Z. E.; Wang, X.; Young, B.; Gagnon, P.; Ferguson, S. H.; Kwan, M.; Muir, D. C. G. Mercury in Ringed Seals (Pusa Hispida) from the Canadian Arctic in Relation to Time and Climate Parameters. *Environ. Toxicol. Chem.* **2020**, *39* (12), 2462–2474. https://doi.org/10.1002/ETC.4865.
- Tran, L.; Reist, J. D.; Power, M. Total Mercury Concentrations in Anadromous Northern Dolly Varden from the Northwestern Canadian Arctic: A Historical Baseline Study. *Sci. Total Environ.* 2015, *509–510*, 154–164. https://doi.org/10.1016/J.SCITOTENV.2014.04.099.
- (15) Loseto, L. L.; Stern, G. A.; Deibel, D.; Connelly, T. L.; Prokopowicz, A.; Lean, D. R. S.; Fortier, L.; Ferguson, S. H. Linking Mercury Exposure to Habitat and Feeding Behaviour in Beaufort Sea Beluga Whales. J. Mar. Syst. 2008, 74 (3), 1012–1024.
- Loria, A.; Archambault, P.; Burt, A.; Ehrman, A.; Grant, C.; Power, M.; Stern, G. A. Mercury and Stable Isotope (Δ13C and Δ15N) Trends in Decapods of the Beaufort Sea. *Polar Biol.* 2020, 43 (5), 443–456. https://doi.org/10.1007/s00300-020-02646-x.
- (17) Pomerleau, C.; Stern, G. A.; Pućko, M.; Foster, K. L.; Macdonald, R. W.; Fortier, L. Pan-Arctic Concentrations of Mercury and Stable Isotope Ratios of Carbon (Δ13C) and Nitrogen (Δ15N) in Marine Zooplankton. *Sci. Total Environ.* **2016**, *551–552*, 92–100. https://doi.org/10.1016/J.SCITOTENV.2016.01.172.
- (18) Pućko, M.; Burt, A.; Walkusz, W.; Wang, F.; Macdonald, R. W.; Rysgaard, S.; Barber, D. G.;

Tremblay, J. É.; Stern, G. A. Transformation of Mercury at the Bottom of the Arctic Food Web: An Overlooked Puzzle in the Mercury Exposure Narrative. *Environ. Sci. Technol.* **2014**, *48* (13), 7280–7288. https://doi.org/10.1021/ES404851B/SUPPL_FILE/ES404851B_SI_001.PDF.

- (19) Burt, A. E. Mercury Uptake and Dynamics in Sea Ice Algae, Phytoplankton and Grazing Copepods from a Beaufort Sea Arctic Marine Food Web, University of Manitoba (Canada), 2012.
- (20) Semmler, C. M. Sources, Cycling, and Fate of Arsenic and Mercury in the Coastal Beaufort Sea, Alaska, Citeseer, 2006.
- (21) Ehrman, A.; Hoover, C.; Giraldo, C.; MacPhee, S. A.; Brewster, J.; Michel, C.; Reist, J. D.; Power, M.; Swanson, H.; Niemi, A.; Walkusz, W.; Loseto, L. A Meta-Collection of Nitrogen Stable Isotope Data Measured in Arctic Marine Organisms from the Canadian Beaufort Sea, 1983–2013. *BMC Res. Notes* 2021, *14* (1), 1–3. https://doi.org/10.1186/s13104-021-05743-0.
- (22) Hoover, C. A.; Walkusz, W.; MacPhee, S.; Nieme, A.; Majewski, A.; Loweto, L. *Canadian Beaufort Sea Shelf Food Web Structure and Changes from 1970-2012*; 2021.
- (23) Loseto, L. L.; Stern, G. A.; Ferguson, S. H. Size and Biomagnification: How Habitat Selection Explains Beluga Mercury Levels. *Env. Sci Technol* **2008**, *42* (11), 3982–3988.
- Fox, A. L.; Trefry, J. H.; Trocine, R. P.; Dunton, K. H.; Lasorsa, B. K.; Konar, B.; Ashjian, C. J.; Cooper, L. W. Mercury Biomagnification in Food Webs of the Northeastern Chukchi Sea, Alaskan Arctic. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 2017, 144, 63–77. https://doi.org/10.1016/J.DSR2.2017.04.020.