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Figure S1: Sampling locations of adjacent beaver ponds outside the Ryan Fire burn scar near the 
Colorado-Wyoming border. Ponds were used as control ponds for chemical and microbial 
analyses. BVR1_DOWN = Control Pond 1, SFKBIG_DOWN = Control Pond 2, SFKBIG_UP = 
Control Pond 3. 

Table S1: Average dissolved organic carbon (DOC), dissolved total nitrogen (DTN), and 
% dissolved organic nitrogen (%DON) for the monthly Ryan Fire water samples collected 
one-year post-fire (n = 5). Sampling locations located within the burned area are 
highlighted in gray.
Year 1 Unburned Upstream Beaver Down- Beaver Pond 
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averages Complex 1 stream 4

DOC (ppm) 4.27  2.27 3.60  0.100 5.59  1.65 6.45  1.84 7.01  1.66
DTN (ppm) 0.16  0.055 0.20  0.076 0.34  0.093 0.35  0.098 0.370  0.049
%DON 53  30. 42  19 70  16 73  17 75  11 
C:N 32  22 20.  11 16  3.7 18  6.6 21  7.0

Table S2: Results of F test and student’s t test calculated to determine significance between 
sample means of DOC, DTN, %DON, and C:N.1 All calculations at 95% confidence interval. 
Results of each test highlighted in blue.

Variables F test Upstream Beaver 
Complex 1

Downstream Beaver Pond 4

Fcalculated 1.9 1.9 1.5 1.9
F Critical one-tail 6.4 6.4 6.4 6.4DOC (ppm)

Result Equal Equal Equal Equal
Fcalculated 1.9 2.8 2.3 1.8

F Critical one-tail 6.4 6.4 6.4 6.4DTN (ppm)
Result Equal Equal Equal Equal

Fcalculated 2.5 3.5 3.1 7.1
F Critical one-tail 6.4 6.4 6.4 6.4%DON

Result Equal Equal Equal Unequal
Fcalculated 4.1 36 12 10.

F Critical one-tail 6.4 6.4 6.4 6.4C:N
Result Equal Unequal Unequal Unequal

Variables T test Upstream Beaver 
Complex 1

Downstream Beaver Pond 4

t Stat 0.60 1.1 1.7 2.2
t Critical two-tail 2.3 2.3 2.3 2.3DOC (ppm)

Result Not significant Not significant Not significant Not significant
t Stat 1.0 3.8 4.7 4.4

t Critical two-tail 2.3 2.3 2.3 2.3DTN (ppm)
Result Not significant Significant Significant Significant
T Stat 0.68 1.1 1.3 1.5

t Critical two-tail 2.3 2.3 2.3 2.3%DON
Result Not significant Not significant Not significant Not significant
t Stat 1.1 1.6 1.3 1.0

t Critical two-tail 2.3 2.8 2.8 2.8C:N
Result Not significant Not significant Not significant Not significant



Figure S2: Monthly dissolved organic carbon (DOC) concentrations through the Ryan fire 
watershed. Each box plot displays the minimum, first quartile, median, third quartile, and 
maximum values for the dataset, consisting of data from five months of sampling one-year post-
fire.
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Figure S3: Nitrate (NO3
-) concentrations through the Ryan fire watershed. Location is plotted on 

x-axis going from upstream to downstream (left to right) and concentration is plotted on the y-
axis. Each box plot displays the minimum, first quartile, median, third quartile, and maximum 
values for the dataset, consisting of data from five months of sampling one-year post-fire.
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Figure S4: Ammonium (NH4
+) concentrations through the Ryan fire watershed. Location is 

plotted on x-axis going from upstream to downstream (left to right) and concentration is plotted 
on the y-axis. Each box plot displays the minimum, first quartile, median, third quartile, and 
maximum values for the dataset, consisting of data from five months of sampling one-year post-
fire.

Table S3: Abundance-weighted O/C ratios, modified aromaticity indices (AImod),2,3 and Nominal 
Oxidative State of Carbon (NOSC)4 for Ryan Fire formulas detected by -ESI FT-ICR MS.   

-ESI Unburned Upstream BP1 BP2 BP3 Downstream BP4

O/C 0.494 0.514 0.526 0.512 0.509 0.517 0.501
AImod 0.35 0.38 0.40 0.38 0.37 0.35 0.37
NOSC -0.058 -0.057 -0.019 -0.057 -0.056 -0.057 -0.095

Equation S1: Relationship between nominal oxidation state of carbon (NOSC) and change in 
Gibbs free energy for the oxidation of organic matter (Gox) as described by LaRowe and Van 
Capellen.4
𝐺𝑜𝑥= 60.3 ‒ 28.5 ∗ 𝑁𝑂𝑆𝐶

Table S4: Average molecular weight (MW; in daltons) and calculated C/N ratios and average N 
per formula for the Ryan Fire +ESI FT-ICR MS data.

+ESI Unburned Upstream BP1 BP2 BP3 Downstream BP4

MW 644 677 664 616 618 646 621
C/N 58.8 54.9 44.6 33.9 36.8 44.64 35.7

Average 
N

0.489 0.527 0.635 0.784 0.720 0.593 0.749
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Figure S5: Fluorescence index5 through the Ryan fire watershed. Location is plotted on x-axis 
going from upstream to downstream (left to right) and concentration is plotted on the y-axis. 
Each box plot displays the minimum, first quartile, median, third quartile, and maximum values 
for the dataset, consisting of data from five months of sampling one-year post-fire.
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Figure S6: Freshness index6 through the Ryan Fire watershed. Location is plotted on x-axis 
going from upstream to downstream (left to right) and concentration is plotted on the y-axis. 
Each box plot displays the minimum, first quartile, median, third quartile, and maximum values 
for the dataset, consisting of data from five months of sampling one-year post-fire.
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Figure S7: Metagenomics data collected from Ryan Fire-affected beaver pond sediments. The 
number of CAZymes encoded by each MAG (MAG name and phyla listed along y-axis), colored 
by the carbohydrate substrate upon which they act.



Figure S8: Iron (Fe) concentrations through the Ryan Fire watershed. Location is plotted on x-
axis going from upstream to downstream (left to right) and concentration is plotted on the y-axis. 
Each box plot displays the minimum, first quartile, median, third quartile, and maximum values 
for the dataset, consisting of data from five months of sampling one-year post-fire. 
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