Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supplemental Information

Impact of beaver ponds on biogeochemistry of organic carbon and nitrogen along a fire-impacted stream

Holly K. Roth¹, Amelia R. Nelson², Amy M. McKenna^{2,3}, Timothy S. Fegel⁴, Robert B. Young⁵, Charles C. Rhoades⁴, Michael J. Wilkins², Thomas Borch^{1,2*}

¹Department of Chemistry, Colorado State University, Fort Collins, CO, USA ²Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA ³National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, Florida State University, FL, USA ⁴Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA

⁵Chemical Analysis & Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, USA

* Corresponding author

Figure S1: Sampling locations of adjacent beaver ponds outside the Ryan Fire burn scar near the Colorado-Wyoming border. Ponds were used as control ponds for chemical and microbial analyses. BVR1_DOWN = Control Pond 1, SFKBIG_DOWN = Control Pond 2, SFKBIG_UP = Control Pond 3.

Table S1: Average dissolved organic carbon (DOC), dissolved total nitrogen (DTN), and % dissolved organic nitrogen (%DON) for the monthly Ryan Fire water samples collected one-year post-fire (n = 5). Sampling locations located within the burned area are highlighted in gray.

	Year 1	Unburned	Upstream	Beaver	Down-	Beaver Pond
--	--------	----------	----------	--------	-------	--------------------

averages			Complex 1	stream	4
DOC (ppm)	4.27 ± 2.27	3.60 ± 0.100	5.59 ± 1.65	6.45 ± 1.84	7.01 ± 1.66
DTN (ppm)	0.16 ± 0.055	0.20 ± 0.076	0.34 ± 0.093	0.35 ± 0.098	0.370 ± 0.049
%DON	$53 \pm 30.$	42 ± 19	70 ± 16	73 ± 17	75 ± 11
C:N	32 ± 22	$20. \pm 11$	16 ± 3.7	18 ± 6.6	21 ± 7.0

Table S2: Results of F test and student's t test calculated to determine significance between sample means of DOC, DTN, %DON, and C:N.¹ All calculations at 95% confidence interval. Results of each test highlighted in blue.

Variables	F test	Upstream	Beaver	Downstream	Beaver Pond 4
	Г	1.0		1.5	1.0
DOG	F _{calculated}	1.9	1.9	1.5	1.9
DOC (ppm)	F Critical one-tail	6.4	6.4	6.4	6.4
	Result	Equal	Equal	Equal	Equal
	Fcalculated	1.9	2.8	2.3	1.8
DTN (ppm)	F Critical one-tail	6.4	6.4	6.4	6.4
	Result	Equal	Equal	Equal	Equal
	Fcalculated	2.5	3.5	3.1	7.1
%DON	F Critical one-tail	6.4	6.4	6.4	6.4
	Result	Equal	Equal	Equal	Unequal
	Fcalculated	4.1	36	12	10.
C:N	F Critical one-tail	6.4	6.4	6.4	6.4
	Result	Equal	Unequal	Unequal	Unequal
Variables	T test	Upstream	Beaver	Downstream	Beaver Pond 4
Variables	T test	Upstream	Beaver Complex 1	Downstream	Beaver Pond 4
Variables	T test	Upstream 0.60	Beaver Complex 1	Downstream 1.7	Beaver Pond 4
Variables DOC (ppm)	T test t Stat t Critical two-tail	Upstream 0.60 2.3	Beaver Complex 1 1.1 2.3	Downstream 1.7 2.3	Beaver Pond 4 2.2 2.3
Variables DOC (ppm)	T test t Stat t Critical two-tail Result	Upstream 0.60 2.3 Not significant	Beaver Complex 1 1.1 2.3 Not significant	Downstream 1.7 2.3 Not significant	Beaver Pond 4 2.2 2.3 Not significant
Variables DOC (ppm)	T test t Stat t Critical two-tail Result t Stat	Upstream 0.60 2.3 Not significant 1.0	Beaver Complex 1 1.1 2.3 Not significant 3.8	Downstream 1.7 2.3 Not significant 4.7	Beaver Pond 4 2.2 2.3 Not significant 4.4
Variables DOC (ppm) DTN (ppm)	T test t Stat t Critical two-tail Result t Stat t Critical two-tail	Upstream 0.60 2.3 Not significant 1.0 2.3	Beaver Complex 1 1.1 2.3 Not significant 3.8 2.3	Downstream 1.7 2.3 Not significant 4.7 2.3	Beaver Pond 4 2.2 2.3 Not significant 4.4 2.3
Variables DOC (ppm) DTN (ppm)	T test t Stat t Critical two-tail Result t Stat t Critical two-tail Result	Upstream 0.60 2.3 Not significant 1.0 2.3 Not significant	Beaver Complex 1 1.1 2.3 Not significant 3.8 2.3 Significant	Downstream 1.7 2.3 Not significant 4.7 2.3 Significant	Beaver Pond 4 2.2 2.3 Not significant 4.4 2.3 Significant
Variables DOC (ppm) DTN (ppm)	T test t Stat t Critical two-tail Result t Critical two-tail Result T Stat	Upstream 0.60 2.3 Not significant 1.0 2.3 Not significant 0.68	Beaver Complex 1 1.1 2.3 Not significant 3.8 2.3 Significant 1.1	Downstream 1.7 2.3 Not significant 4.7 2.3 Significant 1.3	Beaver Pond 4 2.2 2.3 Not significant 4.4 2.3 Significant 1.5
Variables DOC (ppm) DTN (ppm) %DON	T test t Stat t Critical two-tail Result t Critical two-tail Result T Stat t Critical two-tail	Upstream 0.60 2.3 Not significant 1.0 2.3 Not significant 0.68 2.3	Beaver Complex 1 1.1 2.3 Not significant 3.8 2.3 Significant 1.1 2.3	Downstream 1.7 2.3 Not significant 4.7 2.3 Significant 1.3 2.3	Beaver Pond 4 2.2 2.3 Not significant 4.4 2.3 Significant 1.5 2.3
Variables DOC (ppm) DTN (ppm) %DON	T test t Stat t Critical two-tail Result t Stat t Critical two-tail Result t Critical two-tail t Critical two-tail Result	Upstream 0.60 2.3 Not significant 1.0 2.3 Not significant 0.68 2.3 Not significant	Beaver Complex 11.12.3Not significant3.82.3Significant1.12.3Not significant	Downstream 1.7 2.3 Not significant 4.7 2.3 Significant 1.3 2.3 Not significant	Beaver Pond 4 2.2 2.3 Not significant 4.4 2.3 Significant 1.5 2.3 Not significant
Variables DOC (ppm) DTN (ppm) %DON	T test t Stat t Critical two-tail Result t Stat t Critical two-tail Result t Critical two-tail Result t Critical two-tail Result t Stat	Upstream 0.60 2.3 Not significant 1.0 2.3 Not significant 0.68 2.3 Not significant 1.1	Beaver Complex 11.12.3Not significant3.82.3Significant1.12.3Not significant1.6	Downstream 1.7 2.3 Not significant 4.7 2.3 Significant 1.3 2.3 Not significant 1.3 2.3 Not significant 1.3 2.3 Not significant 1.3	Beaver Pond 4 2.2 2.3 Not significant 4.4 2.3 Significant 1.5 2.3 Not significant 1.0
Variables DOC (ppm) DTN (ppm) %DON C:N	T test t Stat t Critical two-tail Result t Stat t Critical two-tail Result t Critical two-tail Result t Stat t Stat t Critical two-tail	Upstream 0.60 2.3 Not significant 1.0 2.3 Not significant 0.68 2.3 Not significant 1.1 2.3	Beaver Complex 1 1.1 2.3 Not significant 3.8 2.3 Significant 1.1 2.3 Not significant 1.6 2.8	Downstream 1.7 2.3 Not significant 4.7 2.3 Significant 1.3 2.3 Not significant 1.3 2.3 Not significant 1.3 2.3 Not significant 1.3 2.3	Beaver Pond 4 2.2 2.3 Not significant 4.4 2.3 Significant 1.5 2.3 Not significant 1.0 2.8

Figure S2: Monthly dissolved organic carbon (DOC) concentrations through the Ryan fire watershed. Each box plot displays the minimum, first quartile, median, third quartile, and maximum values for the dataset, consisting of data from five months of sampling one-year post-fire.

Figure S3: Nitrate (NO_3^{-}) concentrations through the Ryan fire watershed. Location is plotted on x-axis going from upstream to downstream (left to right) and concentration is plotted on the y-axis. Each box plot displays the minimum, first quartile, median, third quartile, and maximum values for the dataset, consisting of data from five months of sampling one-year post-fire.

Sampling Location

Figure S4: Ammonium (NH_4^+) concentrations through the Ryan fire watershed. Location is plotted on x-axis going from upstream to downstream (left to right) and concentration is plotted on the y-axis. Each box plot displays the minimum, first quartile, median, third quartile, and maximum values for the dataset, consisting of data from five months of sampling one-year post-fire.

Table S3: Abundance-weig	shted O/C ratio	s, modified aromaticity in	ndices (AI _{mod}), ^{2,3} and Nomina
Oxidative State of Carbon (NOSC) ⁴ for Ry	yan Fire formulas detecte	d by -ESI FT-ICR MS.

-ESI	Unburned	Upstream	BP1	BP2	BP3	Downstream	BP4		
O/C	0.494	0.514	0.526	0.512	0.509	0.517	0.501		
AI _{mod}	0.35	0.38	0.40	0.38	0.37	0.35	0.37		
NOSC	-0.058	-0.057	-0.019	-0.057	-0.056	-0.057	-0.095		

Equation S1: Relationship between nominal oxidation state of carbon (NOSC) and change in Gibbs free energy for the oxidation of organic matter (ΔG°_{ox}) as described by LaRowe and Van Capellen.⁴

 $\Delta G^{\circ}ox = 60.3 - 28.5 * NOSC$

Table S4: Average molecular	weight (MW; in daltons)	and calculated C/N	ratios and average N
per formula for the Ryan Fire	+ESI FT-ICR MS data.		

+ESI	Unburned	Upstream	BP1	BP2	BP3	Downstream	BP4
MW	644	677	664	616	618	646	621
C/N	58.8	54.9	44.6	33.9	36.8	44.64	35.7
Average	0.489	0.527	0.635	0.784	0.720	0.593	0.749
N							

. .

Figure S5: Fluorescence index⁵ through the Ryan fire watershed. Location is plotted on x-axis going from upstream to downstream (left to right) and concentration is plotted on the y-axis. Each box plot displays the minimum, first quartile, median, third quartile, and maximum values for the dataset, consisting of data from five months of sampling one-year post-fire.

Sampling Location

Figure S6: Freshness index⁶ through the Ryan Fire watershed. Location is plotted on x-axis going from upstream to downstream (left to right) and concentration is plotted on the y-axis. Each box plot displays the minimum, first quartile, median, third quartile, and maximum values for the dataset, consisting of data from five months of sampling one-year post-fire.

Figure S7: Metagenomics data collected from Ryan Fire-affected beaver pond sediments. The number of CAZymes encoded by each MAG (MAG name and phyla listed along y-axis), colored by the carbohydrate substrate upon which they act.

Figure S8: Iron (Fe) concentrations through the Ryan Fire watershed. Location is plotted on xaxis going from upstream to downstream (left to right) and concentration is plotted on the y-axis. Each box plot displays the minimum, first quartile, median, third quartile, and maximum values for the dataset, consisting of data from five months of sampling one-year post-fire.

References

- (1) Harris, D. C. *Exploring Chemical Analysis*, Fifth Edition.; Fiorillo, J., Murphy, B., Hadler, G. L., Simpson, J., Szczepanski, T., Eds.; W.H. Freeman and Company: New York, 2013.
- Koch, B. P.; Dittmar, T. From Mass to Structure: An Aromaticity Index for High-Resolution Mass Data of Natural Organic Matter. *Rapid Communications in Mass Spectrometry* 2006, 20 (5), 926–932. https://doi.org/10.1002/rcm.2386.
- (3) Koch, B. P.; Dittmar, T. Erratum: From Mass to Structure: An Aromaticity Index for High-Resolution Mass Data of Natural Organic Matter (Rapid Communications in Mass Spectrometry (2006) 20 (926-932) DOI: 10.1002/Rcm.2386). *Rapid Communications in Mass Spectrometry* **2016**, *30* (1), 250. https://doi.org/10.1002/rcm.7433.
- LaRowe, D. E.; Van Cappellen, P. Degradation of Natural Organic Matter: A Thermodynamic Analysis. *Geochimica et Cosmochimica Acta* 2011, 75 (8), 2030–2042. https://doi.org/10.1016/j.gca.2011.01.020.
- (5) McKnight, D. M.; Boyer, E. W.; Westerhoff, P. K.; Doran, P. T.; Kulbe, T.; Andersen, D. T. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. *Limnology and Oceanography* 2001, 46 (1), 38–48. https://doi.org/10.4319/lo.2001.46.1.0038.
- (6) Parlanti, E.; Woè Rz, K.; Geo€roy, L.; Lamotte, M. Dissolved Organic Matter Fluorescence Spectroscopy as a Tool to Estimate Biological Activity in a Coastal Zone Submitted to Anthropogenic Inputs. Organic Geochemistry 2000, 1765–1781. https://doi.org/10.1016/S0146-6380(00)00124-8.