Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Thermal Decomposition Mechanism and Kinetics of Perfluorooctanoic Acid (PFOA) and Other Perfluorinated Carboxylic Acids: A Theoretical Study

M. Yasir Khan, Jiaou Song, Milad Narimani, Gabriel da Silva^{*}

Department of Chemical Engineering, University of Melbourne, Victoria 3010, Australia.

*Corresponding author. Email: gdasilva@unimelb.edu.au

List of Figures

S1	Potential energy diagram for thermal decomposition mechanism of PFOA. Energies are 0 K	
	$enthalpies \ in \ kcal/mol \ calculated \ at \ the \ DSD-PBEB95/def2-TZVPP, \ (M062X/6-31G(2df,p)),$	
	$\label{eq:pbed_def2-TZVPP} \end{tabular}, \end{tabular} and $$ \{BMK/6-31++G(2df,p) \}$ levels of theory. $$ \dots \dots \dots \dots \dots $$. $. $. $. $. $. $	1
S2	Potential energy diagram for thermal decomposition mechanism for 2,3,3,4,4,5,5,6,6,7,7,7-	
	Dodecafluoro-2-(trifluoromethyl) heptanoic acid (iso-PFOA). Energies are 0 K enthalpies in	
	kcal/mol calculated at the DSD-PBEB95/def2-TZVPP and $(\rm M062X/6-31G(2df,p))$ levels	
	of theory.	3
S3	Arrhenius plot of the reaction rate constants, k (s ⁻¹), for the thermal decomposition of	
	iso-PFOA (see PES Fig. S2). Arrhenius expressions for $C_8F_{14}O_2$ + HF (TSO1a), and	
	$C_4F_9CF=CFCF_3 + HF + CO_2$ (TSO3a) are $k = 1.15 \times 10^{13} e^{\frac{-59764}{RT}}$, and $k = 1.38 \times$	
	$10^{14} e^{\frac{-57874}{RT}}$, respectively, (units are s, cal, K, mol)	4
S4	Branching ratio of the degradation products for the thermal decomposition of iso-PFOA	
	(see PES Fig. S2), $C_8F_{14}O_2$ + HF (TSO1a), and $C_4F_9CF=CFCF_3$ + HF + CO ₂ (TSO3a).	4

Arrhenius plot of the reaction rate constants, k (s ⁻¹), for the thermal decomposition of	
Perfluoro-3-Hexyl- α -lactone (PES Fig. 6a (article)). Arrhenius expressions for C ₆ F ₁₃ CFO	
+ CO (TS1O1), and C ₆ F ₁₃ CF + CO ₂ (TS1O2) are $k = 3.95 \times 10^{13} e^{\frac{-16610}{RT}}$, and $k =$	
$5.91 \times 10^{14} e^{\frac{-33528}{RT}}$, respectively, (units are s, cal, K, mol)	6
Branching ratio of the degradation products for the thermal decomposition of Perfluoro-3-	
Hexyl- α -lactone (PES Fig. 6a (article)), $C_6F_{13}CFO$ + CO (TS1O1), and $C_6F_{13}CF$ + CO ₂	
(TS1O2)	7
Potential energy diagram for thermal decomposition mechanism of (a) Perfluoroheptanoic	
acid, (b) Perfluoro-3-Pentyl- α -lactone, (c) hydrolysis of perfluoro-hexane aldehyde to Perflu-	
orohexanoic acid, Energies are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2-	
TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.	8
Potential energy diagram for thermal decomposition mechanism of (a) Perfluorohexanoic	
acid, (b) Perfluoro-3-Butyl- α -lactone, (c) hydrolysis of perfluoro-pentane aldehyde to Perflu-	
$or open tanoic \ acid, \ Energies \ are \ (0 \ K \ enthalpies, \ kcal/mol) \ calculated \ at \ the \ DSD-PBEB95/def2def2def2def2def2def2def2def2def2def2$	-
TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.	10
Potential energy diagram for thermal decomposition mechanism of (a) Perfluoropentanoic	
acid, (b) Perfluoro-3-Propyl- α -lactone, (c) hydrolysis of perfluoro-butane aldehyde to Perflu-	
orobutanoic acid, Energies are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2- $$	
TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.	12
Potential energy diagram for thermal decomposition mechanism of (a) Perfluorobutanoic	
acid, (b) Perfluoro-3-Ethyl- α -lactone, (c) hydrolysis of perfluoro-propane aldehyde to Pentaflu-	
$oropropionic \ acid, \ Energies \ are \ (0 \ K \ enthalpies, \ kcal/mol) \ calculated \ at \ the \ DSD-PBEB95/def2-def2-def2-def2-def2-def2-def2-def2-$	-
TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.	14
Potential energy diagram for thermal decomposition mechanism for Pentafluoropropionic	
acid. Energies are 0 K enthalpies in kcal/mol calculated at the DSD-PBEB95/def2-TZVPP,	
(M062X/6-31G(2df,p)), [PBE0 /def2-TZVPP] levels of theory.	16
Potential energy diagram for thermal decomposition mechanism for (a) Perfluoro-3-Methyl-	
α -lactone, (b) hydrolysis of perfluoroacetyl fluoride to trifluoroacetic acid (TFA), Energies	
are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-	
31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.	16
	Arrhenius plot of the reaction rate constants, k (s ⁻¹), for the thermal decomposition of Perfluoro-3-Hexyl- α -lactone (PES Fig. 6a (article)). Arrhenius expressions for C ₀ F ₁₃ CFO + CO (TS101), and C ₀ F ₁₃ CF + CO ₂ (TS102) are $k = 3.95 \times 10^{13} e^{-\frac{10010}{RT}}$, and $k =$ 5.91 × 10 ¹⁴ $e^{-\frac{1000}{RT}}$, respectively, (units are s, cal, K, mol)

S13	Optimized transition states and ground state structures reported in Figure S11 and Figure	
	S12, Transition states (a-f) Perfluoro-Methyl- α -lactone (g), Perfluoroacetyl fluoride (h),	
	TFA (i) at the M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	17
S14	Arrhenius plot of the reaction rate coefficients, k (s^{-1}) , for the thermal decomposition of	
	Pentafluoropropionic acid (see PES Fig. S11). Arrhenius expressions for $\rm CF_3CFO+CO+$	
	HF (TS1E), + CF ₃ CF ₂ H + CO ₂ (TS2E), CF ₃ CF + FCOOH (TS3E), and CF ₂ CF ₂ + HF	
	+ CO ₂ (TS4E) are $k = 8.10 \times 10^{12} e^{\frac{-54706}{RT}}$, $k = 2.40 \times 10^{14} e^{\frac{-73180}{RT}}$, $k = 3.75 \times 10^{13} e^{\frac{-88780}{RT}}$,	
	and $k = 2.90 \times 10^{14} e^{\frac{-69763}{RT}}$ respectively (units are s, cal, K, mol)	18
S15	Branching ratio of the degradation products for the thermal decomposition of Pentafluoro-	
	propionic acid (see PES Fig. 4 in the article), $CF_3CFO + CO + HF$ (TS1E), $+ CF_3CF_2H$	
	+ CO ₂ (TS2E), CF ₃ CF + FCOOH (TS3E), and CF ₂ CF ₂ + HF + CO ₂ (TS4E)	18
S16	Potential energy diagram for thermal decomposition mechanism for Perfluorononanoic acid	
	(PFNA). Energies are 0 K enthalpies in kcal/mol calculated at the $(M062X/6-31G(2df,p))$,	
	[PBE0/def2-TZVPP] levels of theory.	20
S17	Formation of different radicals resulting from direct bonds dissociation of trifluoroacetic	
	acid (TFA).	22
S18	Optimized (M06-2X/6-31G(2df,p)) ground state structures of the key species involve in the	
	radical network of TFA dissociation S17	23
S19	Comparison of the absolute percentage error (%) between DSD-PBEB95/def2-TZVPP and	
	$\rm PBE0/def2\textsc{-}TZVPP$ for the transition states of TFA (Table S20). The percentage errors are	
	calculated with reference to G3X-K method	24

List of Tables

S1	Arrhenius expressions for the decomposition channels of PFOA presented in Fig. 1 (article),	
	units are: s, cal, K, and mol.	1
S2	Half lives of PFOA based on TSO1, TSO2, and TSO3, assuming a first order decomposition	
	reaction.	2
S3	Arrhenius expressions for the decomposition channels of iso-PFOA presented in Fig. S2,	
	units are: s, cal, K, and mol.	3

S4	Half lives of iso-PFOA based on the transition state TSO1a and TSO3a (assuming a first	
	order decomposition reaction)	5
S5	Arrhenius expressions for the decomposition channels presented in Fig. 6 (article), units	
	are: s, cal, K, and mol	6
$\mathbf{S6}$	Half lives of Perfluoro-3-Hexyl- α -lactone based on the transition state TS1O1 and TS1O2	7
S7	Arrhenius expressions for the decomposition channels presented in Fig. S7, units are: s,	
	cal, K, and mol	8
S 8	Half lives of Perfluoroheptanoic acid (TS71) and Perfluoro-3-Pentyl- α -lactone (TS171, and	
	TS172) by assuming a first order decomposition reaction.	9
S9	Arrhenius expressions for the decomposition channels presented in Fig. S8, units are: s,	
	cal, K, and mol	10
S10	Half lives of Perfluorohexanoic acid (TS61) and Perfluoro-3-Butyl- α -lactone (TS161, and	
	TS162) by assuming a first order decomposition reaction.	11
S11	Arrhenius expressions for the decomposition channels presented in Fig. S9, units are: s,	
	cal, K, and mol	12
S12	Half lives of Perfluor opentanoic acid (TS51) and Perfluoro-3-Propyl- α -lactone (TS151, and	
	TS152) by assuming a first order decomposition reaction.	13
S13	Arrhenius expressions for the decomposition channels presented in Fig. S10, units are: s,	
	cal, K, and mol	14
S14	Half lives of Perfluorobutanoic acid (TS41) and Perfluoro-3-Ethyl- α -lactone (TS141, and	
	TS142) by assuming a first order decomposition reaction.	15
S15	Arrhenius expressions for the decomposition channels presented in Fig. S11, and Fig. S12,	
	units are: s, cal, K, and mol.	19
S16	Half lives of Pentafluor opropionic acid (TS1E) and Perfluoro-Methyl- α -lactone (TS1E1, and	
	TS1E2) by assuming a first order decomposition reaction.	19
S17	Arrhenius expressions for the decomposition of Perfluorononanoic acid presented in Fig.	
	S16, units are: s, cal, K, and mol	20
S18	Half lives of Perfluorononanoic acid based on the transition state TSN1, TSN3, and TSN4	
	(assuming a first order decomposition reaction)	21
S19	Energies are 0 K enthalpies in kcal/mol for the different bond dissociation energies of TFA,	
	calculated at different levels of theory with zero-point corrections	22

S20	Energies are 0 K enthalpies in kcal/mol for TFA transition states, calculated at different	
	levels of theory with zero-point corrections.	23
S21	Arrhenius expressions for the decomposition channels presented in Fig. 8 (article), and Fig.	
	12 (article), units are: s, cal, K, and mol.	24
S22	Half lives of TFA (TS1M, TS2M), diffuoroacetolactone (TS1M1, and TS1M2), and perfluoro-	
	formic acid (TS1M4) by assuming a first order decomposition reaction	25
S23	Moments of inertia (amu $Å^2$) of PFOA and transition states presented in Fig. 3 (article)	
	at M06-2X/6-31G(2df,p) level of theory	26
S24	Moments of inertia (amu Ų) of Perfluoro-3-Hexyl- α -lactone, C7-perfluorinated aldehyde,	
	water, and transition states presented in Fig. 6 (article) at M06-2X/6-31G(2df,p) level of	
	theory	26
S25	Moments of inertia (amu $Å^2$) of iso-PFOA and transition states presented in Fig. S2 at	
	M06-2X/6-31G(2df,p) level of theory	26
S26	Moments of inertia (amu Ų) of Perfluoroheptanoic acid, Perfluoro-3-Pentyl- α -lactone, C6-	
	perfluorinated aldehyde, and transition states presented in Fig. S7 at M06-2X/6-31G(2df,p) $$	
	level of theory.	27
S27	Moments of inertia (amu Ų) of Perfluoro hexanoic acid, Perfluoro-3-Butyl- α -lactone, C5-	
	perfluorinated aldehyde, and transition states presented in Fig. S8 at M06-2X/6-31G(2df,p) $$	
	level of theory.	27
S28	Moments of inertia (amu Ų) of Perfluor opentanoic acid, Perfluoro-3-Propyl- α -lactone, C4-	
	perfluorinated aldehyde, and transition states presented in Fig. S9 at M06-2X/6-31G(2df,p) $$	
	level of theory.	27
S29	Moments of inertia (amu Ų) of Perfluoro butanoic acid, Perfluoro-3-Ethyl- α -lactone, C3-	
	perfluorinated aldehyde, and transition states presented in Fig. S10 at M06-2X/6-31G(2df,p) $$	
	level of theory.	28
S30	Moments of inertia (amu Ų) of Pentafluoro propionic acid, Perfluoro-3-Methyl- α -lactone,	
	perfluoroacetyl fluoride, and transition states TS1E, TS1E1, TS1E2, and TS1E3 at M06-	
	2X/6-31G(2df,p) level of theory	28
S31	Moments of inertia (amu $Å^2$) of PFNA and transition states presented in Fig. S16 at	
	M06-2X/6-31G(2df,p) level of theory	28

S32	Moments of inertia (amu $Å^2$) of trifluoroacetic acid (TFA) and transition states presented	
	in Fig. 8 (article) at M06-2X/6-31G(2df,p) level of theory	29
S33	Moments of inertia (amu $Å^2$) of Difluoroacetolactone, carbonyl fluoride, perfluoro-formic	
	acid, and transition states TS1M1, TS1M2, TS1M3, and TS1M4 at M06-2X/6-31G(2df,p) $$	
	level of theory.	29
S34	Vibrational frequencies (cm ⁻¹) of PFOA, and transition state TSO1 and TSO2 at M06-	
	2X/6-31G(2df,p) level of theory	30
S35	Vibrational frequencies (cm ⁻¹) of transition states TSO3, TSO4, and TSO5 at M06-2X/6-	
	31G(2df,p) level of theory	31
S36	Vibrational frequencies (cm ⁻¹) of Perfluoro-3-Hexyl- α -lactone, and transition states TS1O1,	
	and TS1O2 at M06-2X/6-31G(2df,p) level of theory	32
S37	Vibrational frequencies (cm ⁻¹) of C7-perfluorinated aldehyde, and transition states TS1O3,	
	and water at M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots$	33
S38	Vibrational frequencies (cm ⁻¹) of iso-PFOA, and transition state TSO1a and TSO3a at	
	M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots$	34
S39	Vibrational frequencies (cm ⁻¹) of Perfluoroheptanoic acid, Perfluoro-3-Pentyl- α -lactone, and	
	transition state TS71 at M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots \ldots \ldots \ldots$	35
S40	Vibrational frequencies (cm ⁻¹) of C6-perfluorinated aldehyde, and transition states TS171,	
	TS172, and TS173 at M06-2X/6-31G(2df,p) level of theory	36
S41	Vibrational frequencies (cm ⁻¹) of Perfluorohexanoic acid, Perfluoro-3-Butyl- α -lactone, and	
	transition states TS61, and TS161 at M06-2X/6-31G(2df,p) level of theory	37
S42	Vibrational frequencies (cm ⁻¹) of C5-perfluorinated aldehyde, and transition states TS162,	
	and TS163 at M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots$	38
S43	Vibrational frequencies (cm ⁻¹) of Perfluor opentanoic acid, Perfluoro-3-Propyl- α -lactone, and	
	transition states TS51, and TS151 at M06-2X/6-31G(2df,p) level of theory	39
S44	Vibrational frequencies (cm ⁻¹) of C4-perfluorinated aldehyde, and transition states TS152,	
	and TS153 at M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots$	40
S45	Vibrational frequencies (cm ⁻¹) of Perfluorobutanoic acid (C ₃ F ₇ COOH), Perfluoro-3-Ethyl-	
	α -lactone (C ₃ F ₆ CO ₂), C3-perfluorinated aldehyde (C ₃ F ₆ O) and transition states TS41,	
	TS141, TS142, and TS143 at M06- $2X/6-31G(2df,p)$ level of theory \ldots	41

S46	Vibrational frequencies (cm^{-1}) of Pentafluoropropionic acid (C_2F_5COOH) , Perfluoro-3-Methyl-	
	α -lactone (C ₂ F ₄ CO ₂), perfluoroacetyl fluoride (C ₂ F ₄ O) and transition states TS1E, TS1E1,	
	TS1E2, and TS1E3 at M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	42
S47	Vibrational frequencies (cm ⁻¹) of Perfluorononanoic acid (PFNA), and transition state TSN1	
	and TSN2 at M06-2X/6-31G(2df,p) level of theory $\ldots \ldots \ldots$	43
S48	Vibrational frequencies (cm ⁻¹) of transition states TSN3, TSN4, and TSN5 at M06-2X/6-	
	31G(2df,p) level of theory	44
S49	Vibrational frequencies (cm ⁻¹) of trifluoroacetic acid (TFA), and transition states TS1M,	
	TS2M, TS3M, TS4M, and TS5M at M06-2X/6-31G(2df,p) level of theory $\hfill \ldots \ldots \ldots$	45
S50	Vibrational frequencies (cm^{-1}) of Difluoroacetolactone (CF_2CO_2) , carbonyl fluoride (CF_2O) ,	
	perfluoro-formic acid (FCOOH), and transition states TS1M1, TS1M2, TS1M3, and TS1M4	
	at M06-2X/6-31G(2df,p) level of theory $\dots \dots \dots$	46
S51	Cartesian coordinates (Å) of PFOA	47
S52	Cartesian coordinates (Å) of TSO1	48
S53	Cartesian coordinates (Å) of TSO2	49
S54	Cartesian coordinates (Å) of TSO3	50
S55	Cartesian coordinates (Å) of TSO4	51
S56	Cartesian coordinates (Å) of TSO5	52
S57	Cartesian coordinates (Å) of Perfluoro-3-Hexyl- α -lactone	53
S58	Cartesian coordinates (Å) of TS1O1	54
S59	Cartesian coordinates (Å) of TS1O2	55
S60	Cartesian coordinates (Å) of C7-perfluorinated aldehyde	56
S61	Cartesian coordinates (Å) of TS1O3	57
S62	Cartesian coordinates (Å) of perfluoroheptanoic acid	58
S63	Cartesian coordinates (Å) of iso-PFOA	59
S64	Cartesian coordinates (Å) of TSO1a	60
S65	Cartesian coordinates (Å) of TSO3a	61
S66	Cartesian coordinates (Å) of perfluoroheptanoic acid	62
S67	Cartesian coordinates (Å) of TS71	63
S68	Cartesian coordinates (Å) of Perfluoro-3-Pentyl- α -lactone	64
S69	Cartesian coordinates (Å) of TS171	65

S70	Cartesian coordinates (Å) of TS172	66
S71	Cartesian coordinates (Å) of C6-perfluorinated aldehyde \hdots	67
S72	Cartesian coordinates (Å) of TS173	68
S73	Cartesian coordinates (Å) of Perfluorohexanoic acid	69
S74	Cartesian coordinates (Å) of TS61	70
S75	Cartesian coordinates (Å) of Perfluoro-3-Butyl- α -lactone	71
S76	Cartesian coordinates (Å) of TS161	72
S77	Cartesian coordinates (Å) of TS162	73
S78	Cartesian coordinates (Å) of C5-perfluorinated aldehyde $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	74
S79	Cartesian coordinates (Å) of TS163	75
S80	Cartesian coordinates (Å) of Perfluor opentanoic acid \hdots	76
S81	Cartesian coordinates (Å) of TS51	77
S82	Cartesian coordinates (Å) of Perfluoro-3-Propyl- α -lactone	78
S83	Cartesian coordinates (Å) of TS151	79
S84	Cartesian coordinates (Å) of TS152	80
S85	Cartesian coordinates (Å) of C4-perfluorinated aldehyde	80
S86	Cartesian coordinates (Å) of TS153	81
S87	Cartesian coordinates (Å) of Perfluorobutanoic acid	82
S88	Cartesian coordinates (Å) of TS41	83
S89	Cartesian coordinates (Å) of Perfluoro-3-Ethyl- α -lactone	83
S90	Cartesian coordinates (Å) of TS141	84
S91	Cartesian coordinates (Å) of TS142	84
S92	Cartesian coordinates (Å) of C3-perfluorinated aldehyde	85
S93	Cartesian coordinates (Å) of TS143	85
S94	Cartesian coordinates (Å) of Pentafluoropropionic acid	86
S95	Cartesian coordinates (Å) of TS1E	86
S96	Cartesian coordinates (Å) of TS2E	87
S97	Cartesian coordinates (Å) of TS3E	87
S98	Cartesian coordinates (Å) of TS4E	88
S99	Cartesian coordinates (Å) of Perfluoro-3-Methyl- α -lactone	88
S100	Cartesian coordinates (Å) of TS1E1	89

S101 Cartesian coordinates (Å) of TS1E2	89
S102 Cartesian coordinates (Å) of perfluoroacetyl fluoride $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	89
S103 Cartesian coordinates (Å) of TS1E3	90
S104 Cartesian coordinates (Å) of trifluoroacetic acid (TFA)	91
S105 Cartesian coordinates (Å) of TS1M	91
S106 Cartesian coordinates (Å) of TS2M	92
S107 Cartesian coordinates (Å) of TS3M	92
S108 Cartesian coordinates (Å) of TS4M	92
S109 Cartesian coordinates (Å) of TS5M	93
S110 Cartesian coordinates (Å) of Difluoroacetolactone $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	93
S111 Cartesian coordinates (Å) of TS1M1	93
S112 Cartesian coordinates (Å) of TS1M2	94
S113 Cartesian coordinates (Å) of carbonyl fluoride	94
S114 Cartesian coordinates (Å) of TS1M3	94
S115 Cartesian coordinates (Å) of perfluoro-formic acid	95
S116 Cartesian coordinates (Å) of TS1M4	95

Decomposition of PFOA

Figure S1: Potential energy diagram for thermal decomposition mechanism of PFOA. Energies are 0 K enthalpies in kcal/mol calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP], and {BMK/6-31++G(2df,p)} levels of theory.

Table S1:	Arrhenius	$\operatorname{expressions}$	for the	e decomposition	channels	of PFOA	presented in Fig.	1	(article),
units are:	s, cal, K, a	nd mol.							

Transition states	Arrhenius expression (s^{-1})
$\mathrm{TSO1}\;(\mathrm{C}_{6}\mathrm{F}_{13}\mathrm{CFCO}_{2}+\mathrm{HF})$	$k = 2.66 \times 10^{13} e^{\frac{-52605}{RT}}$
$TSO2 (C_5F_{11}CF=CF_2 + CO_2 + HF)$	$k = 1.83 \times 10^{14} e^{\frac{-70023}{RT}}$
$\mathrm{TSO3}\;(\mathrm{C}_{6}\mathrm{F}_{13}\mathrm{CF}_{2}\mathrm{H}+\mathrm{CO}_{2})$	$k = 7.03 \times 10^{14} e^{\frac{-71285}{RT}}$
$\mathrm{TSO4}\;(\mathrm{C}_{6}\mathrm{F}_{13}\mathrm{CF}+\mathrm{HFCO}_{2})$	$k = 9.23 \times 10^{13} e^{\frac{-85966}{RT}}$
TSO5 ($C_7F_{15}OCOH$)	$k = 4.83 \times 10^{13} e^{\frac{-95974}{RT}}$

Temperature	TSO1	TSO2	TSO3
(K)	half life (s)	half life (s)	half life (s)
300	$5.05 \times 10^{+24}$	$3.33 \times 10^{+36}$	$6.88 \times 10^{+36}$
400	$1.46 \times 10^{+15}$	$7.01 \times 10^{+23}$	$8.99 \times 10^{+23}$
500	$2.69 \times 10^{+09}$	$1.67 \times 10^{+16}$	$1.58 \times 10^{+16}$
600	$4.00 \times 10^{+05}$	$1.35 \times 10^{+11}$	$1.04 \times 10^{+11}$
700	$7.32 \times 10^{+02}$	$3.06 \times 10^{+07}$	$2.02 \times 10^{+07}$
800	$6.44 \times 10^{+00}$	$5.60 \times 10^{+04}$	$3.29 \times 10^{+04}$
900	1.62×10^{-01}	$4.13 \times 10^{+02}$	$2.21 \times 10^{+02}$
1000	8.45×10^{-03}	$8.07 \times 10^{+00}$	$4.00 \times 10^{+00}$
1200	1.00×10^{-04}	2.18×10^{-02}	9.60×10^{-03}
1400	4.19×10^{-06}	3.14×10^{-04}	1.27×10^{-04}
1600	3.86×10^{-07}	1.30×10^{-05}	4.94×10^{-06}
1800	6.01×10^{-08}	1.08×10^{-06}	3.92×10^{-07}
2000	1.35×10^{-08}	1.48×10^{-07}	5.13×10^{-08}

Table S2: Half lives of PFOA based on TSO1, TSO2, and TSO3, assuming a first order decomposition reaction.

Decomposition of iso-PFOA

Figure S2: Potential energy diagram for thermal decomposition mechanism for 2,3,3,4,4,5,5,6,6,7,7,7-Dodecafluoro-2-(trifluoromethyl) heptanoic acid (iso-PFOA). Energies are 0 K enthalpies in kcal/mol calculated at the DSD-PBEB95/def2-TZVPP and (M062X/6-31G(2df,p)) levels of theory.

Table S3: Arrhenius expressions for the decomposition channels of iso-PFOA presented in Fig. S2, units are: s, cal, K, and mol.

Transition states	Arrhenius expression (s^{-1})
TSO1a (C ₈ F ₁₄ O ₂ + HF)	$k = 1.15 \times 10^{13} e^{\frac{-59764}{RT}}$
$TSO3a~(C_4F_9CF{=}CFCF_3 + HF + CO_2)$	$k = 1.38 \times 10^{14} e^{\frac{-57874}{RT}}$

Figure S3: Arrhenius plot of the reaction rate constants, k (s⁻¹), for the thermal decomposition of iso-PFOA (see PES Fig. S2). Arrhenius expressions for $C_8F_{14}O_2 + HF$ (TSO1a), and $C_4F_9CF=CFCF_3 + HF + CO_2$ (TSO3a) are $k = 1.15 \times 10^{13} e^{\frac{-59764}{RT}}$, and $k = 1.38 \times 10^{14} e^{\frac{-57874}{RT}}$, respectively, (units are s, cal, K, mol).

Figure S4: Branching ratio of the degradation products for the thermal decomposition of iso-PFOA (see PES Fig. S2), $C_8F_{14}O_2 + HF$ (TSO1a), and $C_4F_9CF=CFCF_3 + HF + CO_2$ (TSO3a).

Temperature	TSO1a	TSO3a
(K)	half life (s)	half life (s)
300	$1.92 \times 10^{+30}$	$6.20 \times 10^{+27}$
400	$2.73 \times 10^{+19}$	$2.14 \times 10^{+17}$
500	$8.34 \times 10^{+12}$	$1.09 \times 10^{+11}$
600	$3.75 \times 10^{+08}$	$6.75 \times 10^{+06}$
700	$2.92 \times 10^{+05}$	$6.57 \times 10^{+03}$
800	$1.35 \times 10^{+03}$	$3.58 \times 10^{+01}$
900	$2.06 \times 10^{+01}$	6.17×10^{-01}
1000	7.23×10^{-01}	2.38×10^{-02}
1200	4.69×10^{-03}	1.77×10^{-04}
1400	1.27×10^{-04}	5.29×10^{-06}
1600	8.46×10^{-06}	3.77×10^{-07}
1800	1.02×10^{-06}	4.80×10^{-08}
2000	1.88×10^{-07}	9.19×10^{-09}

Table S4: Half lives of iso-PFOA based on the transition state TSO1a and TSO3a (assuming a first order decomposition reaction)

Arrhenius plot and branching ratio for Perfluoro-3-Hexyl- α -lactone

Figure S5: Arrhenius plot of the reaction rate constants, k (s⁻¹), for the thermal decomposition of Perfluoro-3-Hexyl- α -lactone (PES Fig. 6a (article)). Arrhenius expressions for C₆F₁₃CFO + CO (TS1O1), and C₆F₁₃CF + CO₂ (TS1O2) are $k = 3.95 \times 10^{13} e^{\frac{-16610}{RT}}$, and $k = 5.91 \times 10^{14} e^{\frac{-33528}{RT}}$, respectively, (units are s, cal, K, mol).

Transition states	Arrhenius expression
$\mathrm{TS1O1}\;(\mathrm{C}_{6}\mathrm{F}_{13}\mathrm{CFO}+\mathrm{CO})$	$k^{\rm a} = 3.95 \times 10^{13} \ e^{\frac{-16610}{RT}}$
$\mathrm{TS1O2}\;(\mathrm{C}_{6}\mathrm{F}_{13}\mathrm{CF}+\mathrm{CO}_{2})$	$k^{\rm a} = 5.91 \times 10^{14} e^{\frac{-33528}{RT}}$
$TS1O3~(C_6F_{13}COOH+HF)$	$k^{\rm b} = 8.68 \times 10^{-15} e^{\frac{-38665}{RT}}$

Table S5: Arrhenius expressions for the decomposition channels presented in Fig. 6 (article), units are: s, cal, K, and mol.

 $^{\rm a}$ the unit of the k is $\rm s^{-1}$

Figure S6: Branching ratio of the degradation products for the thermal decomposition of Perfluoro-3-Hexyl- α -lactone (PES Fig. 6a (article)), C₆F₁₃CFO + CO (TS1O1), and C₆F₁₃CF + CO₂ (TS1O2).

Temperature	TS101	TS1O2	
(K)	half life (s)	half life (s)	
300	1.98×10^{-02}	$2.71 \times 10^{+09}$	
400	2.14×10^{-05}	$2.52 \times 10^{+03}$	
500	3.41×10^{-07}	5.75×10^{-01}	
600	2.11×10^{-08}	2.08×10^{-03}	
700	2.86×10^{-09}	3.71×10^{-05}	
800	6.35×10^{-10}	1.79×10^{-06}	
900	1.96×10^{-10}	1.69×10^{-07}	
1000	7.64×10^{-11}	2.55×10^{-08}	
1200	1.85×10^{-11}	1.49×10^{-09}	
1400	6.71×10^{-12}	1.95×10^{-10}	
1600	3.13×10^{-12}	4.23×10^{-11}	
1800	1.73×10^{-12}	1.29×10^{-11}	
2000	1.07×10^{-12}	4.97×10^{-12}	

Table S6: Half lives of Perfluoro-3-Hexyl- α -lactone based on the transition state TS1O1 and TS1O2

Decomposition of Perfluoroheptanoic acid

Figure S7: Potential energy diagram for thermal decomposition mechanism of (a) Perfluoroheptanoic acid, (b) Perfluoro-3-Pentyl- α -lactone, (c) hydrolysis of perfluoro-hexane aldehyde to Perfluorohexanoic acid, Energies are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.

Table S7: Arrhenius expressions for the decomposition channels presented in Fig. S7, units are: s, cal, K, and mol.

Transition states	Arrhenius expression
$\mathrm{TS71}\;(\mathrm{C}_{5}\mathrm{F}_{11}\mathrm{CFCO}_{2}+\mathrm{HF})$	$k^{\rm a} = 1.98 \times 10^{13} \ e^{\frac{-53669}{RT}}$
$\mathrm{TS171}~(\mathrm{C}_{5}\mathrm{F}_{11}\mathrm{CFO}+\mathrm{CO})$	$k^{\rm a} = 3.29 \times 10^{13} \; e^{\frac{-15983}{RT}}$
$TS172 (C_5F_{11}CF + CO_2)$	$k^{\rm a} = 5.89 \times 10^{14} \ e^{\frac{-32414}{RT}}$
$TS173 (C_5F_{11}COOH + HF)$	$k^{\rm b} = 1.86 \times 10^{-15} e^{\frac{-32076}{RT}}$

 $^{\rm a}$ the unit of the k is $\rm s^{-1}$

Temperature	TS71	TS171	TS172
(K)	half life (s)	half life (s)	half life (s)
300	$4.03 \times 10^{+25}$	8.30×10^{-03}	$4.19 \times 10^{+08}$
400	$7.46 \times 10^{+15}$	1.17×10^{-05}	$6.24 \times 10^{+02}$
500	$1.05 \times 10^{+10}$	2.17×10^{-07}	1.88×10^{-01}
600	$1.31 \times 10^{+06}$	1.50×10^{-08}	8.23×10^{-04}
700	$2.11 \times 10^{+03}$	2.19×10^{-09}	1.67×10^{-05}
800	$1.68 \times 10^{+01}$	5.13×10^{-10}	8.94×10^{-07}
900	3.92×10^{-01}	1.66×10^{-10}	9.12×10^{-08}
1000	1.93×10^{-02}	6.69×10^{-11}	1.46×10^{-08}
1200	2.10×10^{-04}	1.71×10^{-11}	9.35×10^{-10}
1400	8.23×10^{-06}	6.43×10^{-12}	1.31×10^{-10}
1600	7.22×10^{-07}	3.08×10^{-12}	2.98×10^{-11}
1800	1.08×10^{-07}	1.74×10^{-12}	9.45×10^{-12}
2000	2.37×10^{-08}	1.10×10^{-12}	3.76×10^{-12}

Table S8: Half lives of Perfluoroheptanoic acid (TS71) and Perfluoro-3-Pentyl- α -lactone (TS171, and TS172) by assuming a first order decomposition reaction.

Decomposition of Perfluorohexanoic acid

Figure S8: Potential energy diagram for thermal decomposition mechanism of (a) Perfluorohexanoic acid, (b) Perfluoro-3-Butyl- α -lactone, (c) hydrolysis of perfluoro-pentane aldehyde to Perfluoropentanoic acid, Energies are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.

Table S9: Arrhenius expressions for the decomposition channels presented in Fig. S8, units are: s, cal, K, and mol.

Transition states	Arrhenius expression
$\mathrm{TS61}\;(\mathrm{C_4F_9CFCO_2}+\mathrm{HF})$	$k^{\rm a} = 2.80 \times 10^{13} \ e^{\frac{-53801}{RT}}$
$\mathrm{TS161}\;(\mathrm{C_4F_9CFO}+\mathrm{CO})$	$k^{\rm a} = 3.42 \times 10^{13} \ e^{\frac{-15108}{RT}}$
$\mathrm{TS162}\;(\mathrm{C_4F_9CF}+\mathrm{CO_2})$	$k^{\rm a} = 1.22 \times 10^{14} \; e^{\frac{-33980}{RT}}$
$\mathrm{TS163}\;(\mathrm{C_4F_9COOH}+\mathrm{HF})$	$k^{\rm b} = 3.30 \times 10^{-15} e^{\frac{-33509}{RT}}$

^a the unit of the k is s^{-1}

Temperature	TS61	TS161	TS162
(K)	half life (s)	half life (s)	half life (s)
300	$3.56 \times 10^{+25}$	1.84×10^{-03}	$2.80 \times 10^{+10}$
400	$6.24 \times 10^{+15}$	3.73×10^{-06}	$2.16 \times 10^{+04}$
500	$8.51 \times 10^{+09}$	8.67×10^{-08}	$4.38 \times 10^{+00}$
600	$1.03 \times 10^{+06}$	6.90×10^{-09}	1.47×10^{-02}
700	$1.64 \times 10^{+03}$	1.12×10^{-09}	2.48×10^{-04}
800	$1.30 \times 10^{+01}$	2.84×10^{-10}	1.15×10^{-05}
900	2.99×10^{-01}	9.76×10^{-11}	1.05×10^{-06}
1000	1.46×10^{-02}	4.14×10^{-11}	1.55×10^{-07}
1200	1.57×10^{-04}	1.14×10^{-11}	8.70×10^{-09}
1400	6.12×10^{-06}	4.51×10^{-12}	1.11×10^{-09}
1600	5.33×10^{-07}	2.25×10^{-12}	2.36×10^{-10}
1800	7.96×10^{-08}	1.31×10^{-12}	7.07×10^{-11}
2000	1.74×10^{-08}	8.47×10^{-13}	2.70×10^{-11}

Table S10: Half lives of Perfluorohexanoic acid (TS61) and Perfluoro-3-Butyl- α -lactone (TS161, and TS162) by assuming a first order decomposition reaction.

Decomposition of Perfluoropentanoic acid

Figure S9: Potential energy diagram for thermal decomposition mechanism of (a) Perfluoropentanoic acid, (b) Perfluoro-3-Propyl- α -lactone, (c) hydrolysis of perfluoro-butane aldehyde to Perfluorobutanoic acid, Energies are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.

Table S11: Arrhenius expressions for the decomposition channels presented in Fig. S9, units are: s, cal, K, and mol.

Transition states	Arrhenius expression
$\mathrm{TS51}\;(\mathrm{C_3F_7CFCO_2}+\mathrm{HF})$	$k^{\rm a} = 2.25 \times 10^{13} e^{\frac{-53400}{RT}}$
$\mathrm{TS151} \; (\mathrm{C_3F_7CFO} + \mathrm{CO})$	$k^{\rm a} = 2.51 \times 10^{13} e^{\frac{-15611}{RT}}$
$\mathrm{TS152}\;(\mathrm{C_3F_7CF}+\mathrm{CO_2})$	$k^{\rm a} = 9.29 \times 10^{13} e^{\frac{-33156}{RT}}$
$TS153~(C_3F_7COOH+HF)$	$k^{\rm b} = 3.56 \times 10^{-16} e^{\frac{-32807}{RT}}$

 $^{\rm a}$ the unit of the k is $\rm s^{-1}$

Temperature	TS51	TS151	TS152
(K)	half life (s)	half life (s)	half life (s)
300	$2.27 \times 10^{+25}$	5.83×10^{-03}	$9.28 \times 10^{+09}$
400	$4.70 \times 10^{+15}$	9.60×10^{-06}	$1.01 \times 10^{+04}$
500	$7.09 \times 10^{+09}$	1.96×10^{-07}	$2.51 \times 10^{+00}$
600	$9.21 \times 10^{+05}$	1.44×10^{-08}	9.70×10^{-03}
700	$1.53 \times 10^{+03}$	2.19×10^{-09}	1.81×10^{-04}
800	$1.26 \times 10^{+01}$	5.33×10^{-10}	9.04×10^{-06}
900	2.98×10^{-01}	1.76×10^{-10}	8.75×10^{-07}
1000	1.49×10^{-02}	7.27×10^{-11}	1.35×10^{-07}
1200	1.66×10^{-04}	1.92×10^{-11}	8.11×10^{-09}
1400	6.60×10^{-06}	7.38×10^{-12}	1.08×10^{-09}
1600	5.86×10^{-07}	3.60×10^{-12}	2.40×10^{-10}
1800	8.87×10^{-08}	2.06×10^{-12}	7.40×10^{-11}
2000	1.95×10^{-08}	1.31×10^{-12}	2.89×10^{-11}

Table S12: Half lives of Perfluoropentanoic acid (TS51) and Perfluoro-3-Propyl- α -lactone (TS151, and TS152) by assuming a first order decomposition reaction.

Decomposition of Perfluorobutanoic acid

Figure S10: Potential energy diagram for thermal decomposition mechanism of (a) Perfluorobutanoic acid, (b) Perfluoro-3-Ethyl- α -lactone, (c) hydrolysis of perfluoro-propane aldehyde to Pentafluoropropionic acid, Energies are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.

Table S13: Arrhenius expressions for the decomposition channels presented in Fig. S10, units are: s, cal, K, and mol.

Transition states	Arrhenius expression
$\mathrm{TS41}\;(\mathrm{C_2F_5CFCO_2}+\mathrm{HF})$	$k^{\rm a} = 6.93 \times 10^{13} e^{\frac{-50915}{RT}}$
$\mathrm{TS141}~(\mathrm{C_2F_5CFO}+\mathrm{CO})$	$k^{\rm a} = 2.55 \times 10^{13} e^{\frac{-16064}{RT}}$
$\mathrm{TS142}\;(\mathrm{C_2F_5CF}+\mathrm{CO_2})$	$k^{\rm a} = 1.26 \times 10^{14} \ e^{\frac{-34221}{RT}}$
$\mathrm{TS143}\;(\mathrm{C_2F_5COOH}+\mathrm{HF})$	$k^{\rm b} = 1.50 \times 10^{-15} e^{\frac{-32785}{RT}}$

 $^{\rm a}$ the unit of the k is $\rm s^{\text{-}1}$

Temperature	TS41	TS141	TS142
(K)	half life (s)	half life (s)	half life (s)
300	$1.14 \times 10^{+23}$	1.23×10^{-02}	$4.09 \times 10^{+10}$
400	$6.66 \times 10^{+13}$	1.67×10^{-05}	$2.83 \times 10^{+04}$
500	$1.88 \times 10^{+08}$	3.04×10^{-07}	$5.39 \times 10^{+00}$
600	$3.70 \times 10^{+04}$	2.06×10^{-08}	1.74×10^{-02}
700	$8.29 \times 10^{+01}$	2.99×10^{-09}	2.86×10^{-04}
800	8.51×10^{-01}	6.96×10^{-10}	1.30×10^{-05}
900	2.40×10^{-02}	2.24×10^{-10}	1.17×10^{-06}
1000	1.38×10^{-03}	8.99×10^{-11}	1.69×10^{-07}
1200	1.89×10^{-05}	2.28×10^{-11}	9.32×10^{-09}
1400	8.76×10^{-07}	8.55×10^{-12}	1.17×10^{-09}
1600	8.70×10^{-08}	4.09×10^{-12}	2.47×10^{-10}
1800	1.44×10^{-08}	2.30×10^{-12}	7.33×10^{-11}
2000	3.40×10^{-09}	1.45×10^{-12}	2.78×10^{-11}

Table S14: Half lives of Perfluorobutanoic acid (TS41) and Perfluoro-3-Ethyl- α -lactone (TS141, and TS142) by assuming a first order decomposition reaction.

Decomposition of Pentafluoropropionic acid

Figure S11: Potential energy diagram for thermal decomposition mechanism for Pentafluoropropionic acid. Energies are 0 K enthalpies in kcal/mol calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-31G(2df,p)), [PBE0 /def2-TZVPP] levels of theory.

Figure S12: Potential energy diagram for thermal decomposition mechanism for (a) Perfluoro-3-Methyl- α -lactone, (b) hydrolysis of perfluoroacetyl fluoride to trifluoroacetic acid (TFA), Energies are (0 K enthalpies, kcal/mol) calculated at the DSD-PBEB95/def2-TZVPP, (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.

Figure S13: Optimized transition states and ground state structures reported in Figure S11 and Figure S12, Transition states (a-f) Perfluoro-Methyl- α -lactone (g), Perfluoroacetyl fluoride (h), TFA (i) at the M06-2X/6-31G(2df,p) level of theory

Figure S14: Arrhenius plot of the reaction rate coefficients, k (s⁻¹), for the thermal decomposition of Pentafluoropropionic acid (see PES Fig. S11). Arrhenius expressions for CF₃CFO + CO + HF (TS1E), + CF₃CF₂H + CO₂ (TS2E), CF₃CF + FCOOH (TS3E), and CF₂CF₂ + HF + CO₂ (TS4E) are $k = 8.10 \times 10^{12} e^{\frac{-54706}{RT}}$, $k = 2.40 \times 10^{14} e^{\frac{-73180}{RT}}$, $k = 3.75 \times 10^{13} e^{\frac{-88780}{RT}}$, and $k = 2.90 \times 10^{14} e^{\frac{-69763}{RT}}$ respectively (units are s, cal, K, mol).

Figure S15: Branching ratio of the degradation products for the thermal decomposition of Pentafluoropropionic acid (see PES Fig. 4 in the article), $CF_3CFO + CO + HF$ (TS1E), $+ CF_3CF_2H + CO_2$ (TS2E), $CF_3CF + FCOOH$ (TS3E), and $CF_2CF_2 + HF + CO_2$ (TS4E).

Table S15: Arrhenius expressions for the decomposition channels presented in Fig. S11, and Fig. S12, units are: s, cal, K, and mol.

Transition states	Arrhenius expression
$\mathrm{TS1E}\;(\mathrm{CF}_3\mathrm{CFCO}_2+\mathrm{HF})$	$k^{\rm a} = 8.10 \times 10^{12} \ e^{\frac{-54706}{RT}}$
TS1E1 (CF ₃ CFO + CO)	$k^{\rm a} = 4.81 \times 10^{13} \ e^{\frac{-17533}{RT}}$
$\mathrm{TS1E2}\;(\mathrm{CF_3CF}+\mathrm{CO_2})$	$k^{\rm a} = 1.72 \times 10^{14} \ e^{\frac{-33884}{RT}}$
TS1E3 (CF ₃ COOH + HF)	$k^{\rm b} = 4.13 \times 10^{-15} e^{\frac{-33581}{RT}}$

^a the unit of the k is s⁻¹ ^b the unit of the k is cm³ molecule⁻¹ s⁻¹

Table S16: Half lives of Pentafluoropropionic acid (TS1E) and Perfluoro-Methyl- α -lactone (TS1E1, and TS1E2) by assuming a first order decomposition reaction.

Temperature	TS1E	TS1E1	TS1E2
(K)	half life (s)	half life (s)	half life (s)
300	$5.68 \times 10^{+26}$	7.63×10^{-02}	$1.70 \times 10^{+10}$
400	$6.72 \times 10^{+16}$	5.62×10^{-05}	$1.35 \times 10^{+04}$
500	$7.27 \times 10^{+10}$	7.09×10^{-07}	$2.82 \times 10^{+00}$
600	$7.59 \times 10^{+06}$	3.76×10^{-08}	9.62×10^{-03}
700	$1.08 \times 10^{+04}$	4.56×10^{-09}	1.64×10^{-04}
800	$7.90 \times 10^{+01}$	9.31×10^{-10}	7.69×10^{-06}
900	$1.71 \times 10^{+00}$	2.70×10^{-10}	7.08×10^{-07}
1000	7.98×10^{-02}	9.98×10^{-11}	1.05×10^{-07}
1200	7.95×10^{-04}	2.24×10^{-11}	5.93×10^{-09}
1400	2.94×10^{-05}	7.67×10^{-12}	7.60×10^{-10}
1600	2.46×10^{-06}	3.43×10^{-12}	1.62×10^{-10}
1800	3.56×10^{-07}	1.83×10^{-12}	4.89×10^{-11}
2000	7.56×10^{-08}	1.11×10^{-12}	1.87×10^{-11}

Decomposition of Perfluorononanoic acid (PFNA)

Figure S16: Potential energy diagram for thermal decomposition mechanism for Perfluorononanoic acid (PFNA). Energies are 0 K enthalpies in kcal/mol calculated at the (M062X/6-31G(2df,p)), [PBE0/def2-TZVPP] levels of theory.

Table S17: Arrhenius expressions for the decomposition of Perfluorononanoic acid presented in Fig. S16, units are: s, cal, K, and mol.

Transition states	Arrhenius expression (s^{-1})
$\mathrm{TSN1}\;(\mathrm{C_7F_{15}CFCO_2}+\mathrm{HF})$	$k = 4.37 \times 10^{13} e^{\frac{-63345}{RT}}$
$TSN2 \; (C_7F_{15}CF + FCOOH)$	$k = 1.35 \times 10^{14} e^{\frac{-91199}{RT}}$
$\mathrm{TSN3}\;(\mathrm{C}_{7}\mathrm{F}_{15}\mathrm{CF}_{2}\mathrm{H}+\mathrm{CO}_{2})$	$k = 1.24 \times 10^{15} e^{\frac{-73706}{RT}}$
$\mathrm{TSN4}\;(\mathrm{C}_{7}\mathrm{F}_{14}\mathrm{CF}_{2}+\mathrm{HF}+\mathrm{CO}_{2})$	$k = 5.94 \times 10^{14} e^{\frac{-71120}{RT}}$
TSN5 ($C_8F_{17}OCOH$)	$k = 3.64 \times 10^{13} e^{\frac{-96642}{RT}}$

Temperature	TSN1	TSN3	TSN4
(K)	half life (s)	half life (s)	half life (s)
300	$2.05 \times 10^{+32}$	$2.26 \times 10^{+38}$	$6.45 \times 10^{+36}$
400	$6.56 \times 10^{+20}$	$1.07 \times 10^{+25}$	$8.60 \times 10^{+23}$
500	$8.12 \times 10^{+13}$	$1.03 \times 10^{+17}$	$1.55 \times 10^{+16}$
600	$1.99 \times 10^{+09}$	$4.49 \times 10^{+11}$	$1.04 \times 10^{+11}$
700	$1.01 \times 10^{+06}$	$6.54 \times 10^{+07}$	$2.07 \times 10^{+07}$
800	$3.38 \times 10^{+03}$	$8.56 \times 10^{+04}$	$3.43 \times 10^{+04}$
900	$4.00 \times 10^{+01}$	$4.85 \times 10^{+02}$	$2.34 \times 10^{+02}$
1000	$1.15 \times 10^{+00}$	$7.67 \times 10^{+00}$	$4.30 \times 10^{+00}$
1200	5.52×10^{-03}	1.50×10^{-02}	1.06×10^{-02}
1400	1.21×10^{-04}	1.72×10^{-04}	1.43×10^{-04}
1600	6.88×10^{-06}	5.99×10^{-06}	5.65×10^{-06}
1800	7.35×10^{-07}	4.37×10^{-07}	4.54×10^{-07}
2000	1.23×10^{-07}	5.35×10^{-08}	6.02×10^{-08}

Table S18: Half lives of Perfluorononanoic acid based on the transition state TSN1, TSN3, and TSN4 (assuming a first order decomposition reaction)

Decomposition of Trifluoroacetic acid (TFA)

Figure S17: Formation of different radicals resulting from direct bonds dissociation of trifluoroacetic acid (TFA).

Table S19:	Energies ar	e 0 K en	thalpies in	kcal/mol	for the	different	bond	dissociation	energies	of TFA
calculated	at different l	levels of t	theory with	zero-poin	t correc	tions.				

Desetional	BDE at	BDE at	BDE at	
Reactions-	$M062X^{b}$	$M062X^{c}$	$\rm PBE0^{d}$	
1	90.6	93.6	86.1	
2	110.7	114.1	107.8	
3	117	121.3	111.8	
4	114.4	115.1	107.4	

^a the numbers (1, 2, ...) represents different decomposition channels as per Figure S17

 $^{\rm b}$ Bond dissociation energies at M062X with 6-31++G(2df,p) basis set

^c Bond dissociation energies at M062X with 6-31G(2df,p) basis set

^d Bond dissociation energies at PBE0/def2-TZVPP

Figure S18: Optimized (M06-2X/6-31G(2df,p)) ground state structures of the key species involve in the radical network of TFA dissociation S17

Table S20: Energies are 0 K enthalpies in kcal/mol for TFA transition states, calculated at different levels of theory with zero-point corrections.

Functional / Basis sot	Transition states				
Functional / Dasis set	TS1M	TS2M	TS3M	TS4M	TS5M
M062X / 6-31G(2df,p)	55.4	54.8	74.7	76.2	97.7
M062X / 6-31++G(2df,p)	53.7	54.4	73.9	75	98.1
M062X / 6-311++G(2df,p)	54.2	54.8	74.1	75.7	99.1
MP2 / 6-31G(2df,p)	51.4	54.8	73	78	98.6
G4	49.5	54.5	75	75.8	99.4
G3XK	49.7	53.8	73.8	76	99.4
PBE0/def2-TZVPP	48.4	52.4	70.6	73.2	97.7
DSD-PBEB95/def2-TZVPP	50.1	52.2	73.1	75.3	99.2

Figure S19: Comparison of the absolute percentage error (%) between DSD-PBEB95/def2-TZVPP and PBE0/def2-TZVPP for the transition states of TFA (Table S20). The percentage errors are calculated with reference to G3X-K method.

Table S21: Arrhenius expressions for the decomposition channels presented in Fig. 8 (article), and Fig. 12 (article), units are: s, cal, K, and mol.

Transition states	Arrhenius expression
$TS1M~(C_2F_2O_2+HF)$	$k^{\rm a} = 1.24 \times 10^{13} e^{\frac{-51131}{RT}}$
$\mathrm{TS2M}\;(\mathrm{CF}_2+\mathrm{HF}+\mathrm{CO}_2)$	$k^{\rm a} = 6.62 \times 10^{14} e^{\frac{-54049}{RT}}$
$\mathrm{TS1M1}\;(\mathrm{CF_2O}+\mathrm{CO})$	$k^{\rm a} = 3.70 \times 10^{13} e^{\frac{-15613}{RT}}$
$\mathrm{TS1M2}\;(\mathrm{CF}_2+\mathrm{CO}_2)$	$k^{\rm a} = 1.52 \times 10^{14} e^{\frac{-20642}{RT}}$
$\mathrm{TS1M3}\ (\mathrm{FCOOH}+\mathrm{HF})$	$k^{\rm b} = 8.92 \times 10^{-15} e^{\frac{-40736}{RT}}$
$\mathrm{TS1M4}\;(\mathrm{HF}+\mathrm{CO}_2)$	$k^{\rm a} = 2.77 \times 10^{13} e^{\frac{-31302}{RT}}$

^a the unit of the k is s^{-1} ^b the unit of the k is cm^3 molecule⁻¹ s^{-1}

Temperature	TS1M	TS2M	TS1M1	TS1M2	TS1M4
(K)	half life (s)				
300	$9.05 \times 10^{+23}$	$2.08 \times 10^{+24}$	4.02×10^{-03}	$4.51 \times 10^{+00}$	$1.41 \times 10^{+09}$
400	$4.91 \times 10^{+14}$	$3.69 \times 10^{+14}$	6.49×10^{-06}	8.89×10^{-04}	$3.20 \times 10^{+03}$
500	$1.31 \times 10^{+09}$	$4.88 \times 10^{+08}$	1.32×10^{-07}	5.10×10^{-06}	$1.27 \times 10^{+00}$
600	$2.49 \times 10^{+05}$	$5.71 \times 10^{+04}$	9.67×10^{-09}	1.60×10^{-07}	6.79×10^{-03}
700	$5.41 \times 10^{+02}$	$8.70 \times 10^{+01}$	1.48×10^{-09}	1.34×10^{-08}	1.60×10^{-04}
800	$5.43 \times 10^{+00}$	6.64×10^{-01}	3.59×10^{-10}	2.07×10^{-09}	9.52×10^{-06}
900	1.51×10^{-01}	1.49×10^{-02}	1.19×10^{-10}	4.84×10^{-10}	1.06×10^{-06}
1000	8.56×10^{-03}	7.10×10^{-04}	4.92×10^{-11}	1.51×10^{-10}	1.81×10^{-07}
1200	1.15×10^{-04}	7.31×10^{-06}	1.30×10^{-11}	2.61×10^{-11}	1.27×10^{-08}
1400	5.26×10^{-06}	2.76×10^{-07}	5.01×10^{-12}	7.46×10^{-12}	1.89×10^{-09}
1600	5.18×10^{-07}	2.36×10^{-08}	2.45×10^{-12}	2.91×10^{-12}	4.48×10^{-10}
1800	8.52×10^{-08}	3.46×10^{-09}	1.40×10^{-12}	1.40×10^{-12}	1.46×10^{-10}
2000	2.01×10^{-08}	7.44×10^{-10}	8.96×10^{-13}	7.76×10^{-13}	5.91×10^{-11}

Table S22: Half lives of TFA (TS1M, TS2M), diffuoroacetolactone (TS1M1, and TS1M2), and perfluoro-formic acid (TS1M4) by assuming a first order decomposition reaction.

Input parameters for calculating Arrhenius equation

Table S23: Moments of inertia (amu Å²) of PFOA and transition states presented in Fig. 3 (article) at M06-2X/6-31G(2df,p) level of theory.

PFOA	TSO1	TSO2	TSO3	TSO4	TSO5
1067.7519	1046.7990	1348.3833	1142.8377	1051.4440	1059.2800
3077.5722	3203.9260	2657.6037	3061.7572	3164.1531	3125.8619
3087.0123	3246.6330	2964.2908	3144.9687	3235.9781	3183.4073

Table S24: Moments of inertia (amu Å²) of Perfluoro-3-Hexyl- α -lactone, C7-perfluorinated aldehyde, water, and transition states presented in Fig. 6 (article) at M06-2X/6-31G(2df,p) level of theory.

Perfluoro-3-	TS101	TS102	C7-perfluor-	TS103	НаО
Hexyl- α -lactone	10101	10102	aldehyde	10100	1120
943.4444	958.5473	880.2531	924.5387	844.1324	0.6223
2903.3260	2908.9023	3379.9748	2195.4573	2925.9218	1.1529
2977.0477	2968.2873	3618.4516	2284.3431	3027.6094	1.7751

Table S25: Moments of inertia (amu Å²) of iso-PFOA and transition states presented in Fig. S2 at M06-2X/6-31G(2df,p) level of theory.

iso-PFOA	TSO1a	TSO3a	
1187.4809	1162.6853	1290.7950	
2868.0111	2919.6861	2783.2586	
3046.7600	3077.3826	3149.1679	

Table S26: Moments of inertia (amu Å²) of Perfluoroheptanoic acid, Perfluoro-3-Pentyl- α -lactone, C6-perfluorinated aldehyde, and transition states presented in Fig. S7 at M06-2X/6-31G(2df,p) level of theory.

Perfluoroheptanoic	TS71	Perfluoro-3-	TS171	TS172	C6-perfluor-	TS173
acid		Pentyl- α -lactone			aldehyde	
928.1958	920.8460	814.0983	829.7240	710.6124	928.1958	738.5314
2183.6417	2292.4965	2101.4722	2108.3860	2484.2529	2183.6417	1952.5680
2252.1857	2369.8054	2126.2089	2115.7658	2666.2006	2252.1857	2069.6325

Table S27: Moments of inertia (amu Å²) of Perfluorohexanoic acid, Perfluoro-3-Butyl- α -lactone, C5-perfluorinated aldehyde, and transition states presented in Fig. S8 at M06-2X/6-31G(2df,p) level of theory.

Perfluorohexanoic	TS61	Perfluoro-3-	TS161	TS162	C5-perfluor-	TS163
acid		Butyl- α -lactone			aldehyde	
787.8833	760.5855	656.3563	657.8056	620.8723	621.5517	615.4466
1539.3858	1638.6320	1458.0615	1461.8673	1592.1628	1010.5987	1313.7153
1550.3755	1690.6116	1550.7881	1562.9094	1777.5774	1105.5279	1400.8420

Table S28: Moments of inertia (amu Å²) of Perfluor opentanoic acid, Perfluoro-3-Propyl- α -lactone, C4-perfluorinated aldehyde, and transition states presented in Fig. S9 at M06-2X/6-31G(2df,p) level of theory.

Perfluoropentanoic	TS51	Perfluoro-3-	TS151	TS152	C4-perfluor-	TS153
acid		$\operatorname{Propyl-}\alpha\text{-lactone}$			aldehyde	
539.2549	561.0585	469.7882	461.2358	501.5964	344.4996	506.8395
1166.7417	1181.6837	1022.1265	1087.9100	1059.8475	808.9615	769.6775
1258.1485	1224.4244	1167.1474	1125.2759	1216.2579	884.4997	888.0573
Table S29: Moments of inertia (amu Å²) of Perfluorobutanoic acid, Perfluoro-3-Ethyl- α -lactone, C3-perfluorinated aldehyde, and transition states presented in Fig. S10 at M06-2X/6-31G(2df,p) level of theory.

Perfluorobutanoic	TS41	Perfluoro-3-	TS141	TS142	C3-perfluor-	TS143
acid	1011	Ethyl- α -lactone	10111	10112	aldehyde	10140
452.6047	464.7400	372.2819	374.5382	394.5556	245.7231	323.7817
635.0798	668.1176	555.6605	561.5900	572.8367	425.2609	494.9196
726.7646	718.6269	689.5264	675.8427	734.3221	492.5800	548.7975

Table S30: Moments of inertia (amu Å²) of Pentafluoropropionic acid, Perfluoro-3-Methyl- α -lactone, perfluoroacetyl fluoride, and transition states TS1E, TS1E1, TS1E2, and TS1E3 at M06-2X/6-31G(2df,p) level of theory.

TS1E	Perfluoro-3-	TS1E1	TS1E2	perfluoroacetyl	TS1E3
1011	Methyl- α -lactone	10121	10112	fluoride	10120
279.2783	188.0904	199.1059	185.8845	130.2849	184.1494
425.1791	363.6109	355.6236	412.1597	200.0109	276.2056
479.2018	410.2399	396.7983	456.3799	242.3844	288.7638
	TS1E 279.2783 425.1791 479.2018	Perfluoro-3- Methyl-α-lactone279.2783188.0904425.1791363.6109479.2018410.2399	Perfluoro-3- Methyl-α-lactoneTSTE1279.2783188.0904199.1059425.1791363.6109355.6236479.2018410.2399396.7983	Perfluoro-3- Methyl-α-lactoneTS1E1TS1E2279.2783188.0904199.1059185.8845425.1791363.6109355.6236412.1597479.2018410.2399396.7983456.3799	$\begin{array}{c} \mbox{Perfluoro-3-}\\ \mbox{Methyl-α-lactore} \end{array} & \begin{array}{c} \mbox{TS1E1} & \mbox{TS1E2} \\ \mbox{Methyl-α-lactore} \end{array} & \begin{array}{c} \mbox{Perfluoro-3-}\\ \mbox{fluoride} \end{array} \\ \mbox{fluoride} \end{array} \\ \mbox{279.2783} & 188.0904 & 199.1059 & 185.8845 & 130.2849 \\ \mbox{425.1791} & 363.6109 & 355.6236 & 412.1597 & 200.0109 \\ \mbox{479.2018} & 410.2399 & 396.7983 & 456.3799 & 242.3844 \end{array}$

Table S31: Moments of inertia (amu Å²) of PFNA and transition states presented in Fig. S16 at M06-2X/6-31G(2df,p) level of theory.

PFNA	TSN1	TSN2	TSN3	TSN4	TSN5
1219.2104	1281.7428	1222.8366	1278.1915	1212.5914	1212.7660
4103.6517	4225.7978	4236.2015	4219.6915	4488.8732	4179.5513
4182.3080	4364.2917	4274.5890	4331.1406	4637.7767	4264.9656

Table S32: Moments of inertia (amu Å²) of trifluoroacetic acid (TFA) and transition states presented in Fig. 8 (article) at M06-2X/6-31G(2df,p) level of theory.

TFA	TS1M	TS2M	TS3M	TS4M	TS5M	
129.7888	169.1218	156.2471	128.0567	123.4051	104.4252	
201.6972	185.3823	227.1101	244.2496	213.9509	249.2848	
242.3712	269.9239	301.8061	284.3486	257.9037	263.6763	

Table S33: Moments of inertia (amu Å²) of Difluoroacetolactone, carbonyl fluoride, perfluoro-formic acid, and transition states TS1M1, TS1M2, TS1M3, and TS1M4 at M06-2X/6-31G(2df,p) level of theory.

Difluoroaceto-	TS1M1	TS1M2	carbonyl-	TS1M3	perfluoro-	TS1M4
lactone	10101	101112	fluoride	101110	formic acid	101111
69.3763	76.0858	74.9645	42.2453	86.0556	42.1273	37.4962
165.7822	168.7328	189.6020	42.5542	100.8976	43.7945	56.0327
183.8265	179.1693	196.9133	84.7996	103.4559	85.9218	93.5289

	PFOA			TSO1			TSO2	
C1	C2	C3	C4	C5	C6	C7	C8	C9
42.79	388.34	1286.32	44.68	388.11	1303.97	9.16	377.87	1293.27
51.76	428.95	1292.95	52.59	440.75	1311.13	38.77	390.00	1313.67
58.78	472.31	1304.85	61.39	445.09	1326.87	53.19	445.95	1320.71
68.37	494.60	1324.04	68.03	484.61	1329.17	69.51	484.63	1332.25
79.91	511.52	1333.98	83.36	497.10	1334.55	78.50	499.47	1335.51
97.55	524.79	1341.17	110.44	509.56	1355.45	91.09	530.70	1354.99
111.04	551.24	1354.09	114.82	542.06	1367.49	122.98	554.23	1372.84
138.61	568.64	1364.49	138.71	551.30	1370.41	129.80	560.42	1376.56
145.77	602.37	1370.23	144.20	602.56	1415.89	144.19	600.92	1409.39
151.30	630.39	1373.25	150.62	641.26	1423.19	158.34	607.17	1411.58
151.96	637.06	1420.69	152.59	653.46	1518.37	176.49	655.18	1565.73
171.90	652.51	1444.56	176.49	672.71	1891.85	186.78	666.48	1891.66
190.92	660.47	1944.67	186.29	678.78	2649.14	197.89	678.34	2211.73
207.42	679.74	3816.97	198.38	686.16		219.63	688.39	
228.44	683.00		210.41	741.08		232.14	721.06	
246.49	721.60		230.98	778.45		250.32	740.55	
255.38	778.75		258.35	803.29		259.99	772.92	
275.46	800.63		265.27	923.66		268.82	783.22	
279.35	925.95		276.90	981.02		280.86	915.52	
289.85	989.12		286.72	997.51		295.20	989.06	
305.09	1051.88		298.04	1051.08		308.89	1062.99	
313.99	1113.17		303.19	1121.78		320.97	1069.73	
318.44	1158.74		314.06	1178.07		323.88	1142.70	
320.32	1189.24		317.54	1213.78		332.49	1192.71	
332.45	1203.82		324.92	1251.47		342.11	1212.49	
343.67	1227.91		328.63	1256.84		346.28	1217.83	
368.56	1256.73		344.03	1275.71		349.66	1238.66	
377.42	1265.41		367.28	1282.48		363.69	1269.23	
384.43	1272.76		384.48	1294.54		373.32	1278.35	
up $C2$	up C3		up C5	up C6		up C8	up C9	

Table S34: Vibrational frequencies (cm⁻¹) of PFOA, and transition state TSO1 and TSO2 at M06-2X/6-31G(2df,p) level of theory

	TO3			TSO4			TSO5	
C1	C2	C3	C4	C5	C6	C7	C8	C9
22.58	385.27	1273.49	25.14	416.56	1294.06	33.02	440.41	1284.03
29.15	409.88	1287.65	39.81	450.16	1306.87	42.44	457.80	1294.16
46.92	458.90	1294.49	54.75	480.55	1320.51	60.73	480.19	1323.89
60.29	487.20	1326.05	68.45	494.08	1327.28	67.23	489.00	1334.28
67.05	499.69	1333.33	83.88	503.60	1332.59	68.89	502.59	1340.33
89.75	517.82	1350.06	96.16	511.41	1336.59	95.69	518.80	1346.50
106.19	551.41	1354.49	114.12	550.99	1356.71	113.12	550.96	1358.20
129.40	598.20	1364.01	130.30	577.62	1370.93	137.38	601.98	1364.77
137.65	604.53	1371.34	142.91	583.10	1382.98	143.04	637.63	1367.64
148.00	617.32	1376.13	147.89	602.98	1428.01	149.90	640.96	1420.82
153.39	628.52	1421.01	156.04	635.61	1555.93	152.55	662.64	1430.69
165.68	653.47	2027.31	169.26	655.00	1578.79	168.04	673.20	1594.33
177.08	661.47	2343.15	189.75	670.78	3868.21	189.04	674.68	3607.16
190.13	678.24		209.35	681.17		205.71	682.04	
210.79	682.36		230.23	693.51		219.61	685.16	
220.61	711.83		236.80	774.73		231.81	755.92	
233.27	778.56		249.76	779.03		257.92	777.91	
259.45	905.21		260.14	836.14		275.59	847.00	
277.63	942.97		280.84	906.69		281.16	930.61	
282.63	968.14		295.31	962.66		286.00	984.40	
287.97	1020.56		304.28	1031.27		310.71	1038.74	
303.71	1085.82		308.69	1080.07		313.22	1077.61	
315.44	1134.81		316.67	1103.22		318.26	1134.81	
318.81	1153.95		321.72	1141.21		325.12	1180.40	
321.47	1185.82		327.09	1193.01		331.70	1215.22	
332.47	1210.42		339.35	1220.38		340.88	1224.91	
346.39	1232.45		357.84	1258.64		367.53	1256.48	
369.04	1252.89		370.78	1281.13		383.79	1261.40	
379.86	1264.61		386.02	1288.29		385.08	1270.31	
up $C2$	up C3		up $C5$	up C6		up C8	up C9	

Table S35: Vibrational frequencies (cm⁻¹) of transition states TSO3, TSO4, and TSO5 at M06-2X/6-31G(2df,p) level of theory

	Perfluoro-	3-		$TC1 \cap 1$				TC1O9	
Η	exyl- α -lact	one		15101				15102	
C1	C2	C3	C4	C5	C6		C7	C8	C9
32.45	486.26	1336.57	34.91	461.83	1348.93	1:	3.75	415.21	1336.51
47.66	505.51	1355.43	47.45	486.20	1356.28	43	3.02	467.53	1343.98
56.33	521.94	1366.51	58.51	501.60	1368.67	5	1.84	515.36	1375.38
72.78	551.10	1369.63	70.25	515.51	1369.11	69	9.46	544.52	1393.24
85.72	561.25	1371.32	85.11	550.38	1423.26	79	9.80	553.99	1399.05
111.53	602.66	1386.12	110.41	555.67	1472.71	90	0.20	577.88	1426.10
123.44	603.48	1423.40	121.20	602.13	2253.32	9'	7.55	601.38	2342.14
134.64	648.68	2119.40	135.35	635.41		11	6.64	612.19	
147.15	659.13		146.90	649.37		14	0.69	659.21	
155.33	678.36		153.13	650.72		15	7.02	660.76	
169.40	681.05		173.30	677.69		17	3.39	682.65	
185.44	712.45		188.06	682.14		19	0.91	697.90	
208.16	721.61		205.95	722.75		20	9.28	706.07	
229.20	778.76		228.87	778.22		21	5.42	774.58	
237.55	837.35		237.43	889.64		23	0.07	834.66	
259.46	919.74		256.95	955.46		23	5.47	887.12	
278.67	977.20		277.24	1023.25		24	6.74	974.95	
287.40	1050.11		280.39	1093.75		26	4.40	1076.04	
298.32	1119.80		291.31	1129.08		28	0.63	1195.72	
313.55	1175.46		309.21	1171.85		28	7.94	1201.65	
315.71	1197.10		313.45	1214.05		31	5.25	1222.15	
323.06	1220.38		315.54	1250.22		31	7.53	1252.22	
328.42	1259.17		324.98	1256.46		32	0.55	1260.10	
338.54	1263.40		338.66	1273.22		33	1.17	1272.67	
366.27	1277.64		366.08	1282.67		34	7.74	1283.44	
373.86	1286.18		375.79	1293.58		36	7.80	1296.93	
384.29	1299.72		384.41	1308.56		37	6.48	1313.52	
389.30	1326.07		386.53	1325.42		38	1.09	1322.81	
446.63	1333.94		433.51	1333.67		39	2.12	1327.63	
up $C2$	up C3		up $C5$	up C6		uţ	o C8	up C9	

Table S36: Vibrational frequencies (cm⁻¹) of Perfluoro-3-Hexyl- α -lactone, and transition states TS1O1, and TS1O2 at M06-2X/6-31G(2df,p) level of theory

	C7-perfluoro)-		TS1O3		H ₂ O
	aldehyde					
C1	C2	C3	C4	C5	C6	C7
47.75	542.38	1423.70	21.00	460.80	1332.60	1658.61
60.15	550.87	2011.43	40.25	492.90	1335.10	3884.24
67.33	581.81		63.89	516.28	1341.53	3990.62
78.23	602.65		74.47	523.83	1360.20	
87.80	648.79		85.27	549.21	1383.80	
121.92	652.87		105.05	572.25	1425.40	
132.99	677.62		131.05	602.64	1435.88	
152.54	681.28		153.22	625.64	1978.72	
156.58	732.65		161.73	652.86	2129.49	
162.48	779.00		185.88	665.92	3822.43	
187.00	791.29		191.11	671.10		
206.41	935.81		217.10	693.62		
233.81	1004.43		243.53	697.23		
244.31	1080.86		258.22	772.61		
264.03	1140.32		283.63	827.26		
278.77	1181.53		290.12	903.12		
287.51	1220.52		294.62	961.97		
302.39	1257.93		300.65	1012.22		
311.16	1259.20		309.02	1105.49		
316.27	1281.86		320.22	1123.06		
325.36	1290.36		322.34	1178.16		
341.27	1304.71		337.69	1195.35		
365.38	1323.93		354.72	1228.63		
377.84	1329.56		366.90	1248.72		
386.53	1334.66		374.43	1269.19		
393.83	1354.53		393.40	1277.66		
456.01	1369.91		404.11	1292.54		
488.47	1371.52		414.16	1306.23		
507.74	1376.28		436.65	1325.46		
up C2	up C3		up C5	up C6		

Table S37: Vibrational frequencies (cm⁻¹) of C7-perfluorinated aldehyde, and transition states TS1O3, and water at M06-2X/6-31G(2df,p) level of theory

	PFOA			TSO1			TSO2	
C1	C2	C3	C4	C5	C6	C7	C8	C9
34.20	393.13	1291.04	32.94	407.15	1302.08	34.66	395.35	1284.79
49.65	450.21	1291.94	51.89	444.31	1308.42	45.68	434.93	1296.01
62.94	485.80	1314.33	63.83	477.32	1320.89	49.71	455.88	1302.61
71.92	504.48	1324.30	81.75	506.02	1326.24	63.35	523.14	1337.11
75.37	535.69	1326.88	95.11	519.09	1335.38	66.15	529.10	1341.64
93.76	551.44	1330.99	108.55	550.65	1350.96	81.28	544.75	1343.14
112.44	560.92	1335.03	115.06	566.11	1353.45	90.13	552.46	1376.23
126.39	564.10	1356.91	121.48	593.34	1354.67	106.64	590.43	1387.85
137.79	603.35	1369.83	138.91	604.18	1363.71	125.13	601.23	1426.50
151.51	621.37	1381.92	148.28	632.00	1436.61	151.07	615.86	1435.53
157.63	641.53	1422.71	163.02	645.11	1454.35	159.86	633.11	1537.27
171.55	648.32	1428.45	168.31	668.29	1864.88	168.77	655.11	1795.70
199.07	670.87	1945.16	185.24	680.63	2272.57	197.01	685.98	2219.54
203.73	682.29	3813.61	195.99	709.79		206.46	711.70	
219.51	699.75		206.90	748.83		213.27	724.51	
235.99	725.26		217.56	776.14		235.13	756.20	
269.04	778.98		254.54	797.96		248.00	769.80	
275.16	792.00		283.71	896.59		259.22	786.14	
284.98	903.74		289.03	992.13		289.22	881.87	
292.34	981.46		306.76	1063.60		295.59	944.22	
303.44	1068.15		314.36	1072.16		297.62	1058.78	
316.40	1081.24		325.60	1107.46		306.28	1080.70	
317.48	1150.68		329.81	1166.15		322.36	1148.60	
326.45	1190.07		335.04	1209.49		338.36	1194.24	
336.71	1206.84		352.64	1243.29		343.79	1213.36	
362.36	1240.20		366.75	1265.32		351.06	1243.26	
369.31	1259.52		371.47	1279.77		354.25	1257.63	
376.22	1266.62		374.93	1288.18		375.87	1268.91	
384.62	1273.19		395.57	1295.27		383.96	1270.63	
up $C2$	up C 3		up C5	up C6		up C8	up C9	

Table S38: Vibrational frequencies (cm⁻¹) of iso-PFOA, and transition state TSO1a and TSO3a at M06-2X/6-31G(2df,p) level of theory

Pe	rfluorohepta	anoic	Perflu	ıoro-3-		T971	
	acid		Pentyl-a	α -lactone		15/1	
C1	C2	C3	C4	C5	C6	C7	C8
46.44	525.87	1374.44	38.74	602.84	52.49	504.99	1420.58
52.98	551.68	1423.00	58.52	604.07	60.45	538.49	1518.52
70.22	573.95	1444.51	72.09	659.40	73.30	553.87	1891.90
75.15	602.29	1944.74	78.40	663.84	77.53	602.52	2648.27
89.91	633.25	3813.97	115.10	681.56	105.98	650.42	
116.92	640.50		125.34	711.91	117.92	656.84	
132.49	653.33		129.47	721.02	134.43	678.87	
141.25	673.51		154.49	778.84	148.52	684.79	
152.74	682.04		166.89	837.83	152.61	740.84	
167.91	721.30		182.22	927.52	168.65	778.74	
190.63	778.83		214.40	998.32	185.25	803.84	
208.65	800.24		228.59	1084.04	198.80	932.28	
235.54	937.62		247.13	1162.62	216.03	992.50	
246.53	1010.04		267.05	1197.56	241.28	1001.28	
262.73	1082.58		283.49	1217.63	264.48	1087.49	
278.01	1142.95		292.79	1261.79	268.25	1166.32	
288.20	1186.59		312.71	1273.40	280.06	1209.47	
303.97	1201.96		318.97	1282.18	300.82	1252.28	
312.85	1231.15		326.86	1295.79	304.84	1270.42	
315.19	1256.70		336.59	1323.53	315.53	1283.71	
323.26	1270.89		361.28	1332.62	319.06	1294.61	
341.61	1281.59		375.81	1342.19	325.72	1297.97	
364.91	1291.60		384.78	1362.68	338.13	1311.77	
379.01	1301.29		399.02	1369.02	367.08	1323.45	
386.12	1326.38		466.34	1373.68	383.44	1332.76	
390.70	1332.86		499.76	1386.60	397.83	1335.40	
444.60	1343.84		520.32	1421.55	443.36	1362.81	
486.45	1357.59		549.04	2119.63	461.66	1375.41	
506.64	1370.49		562.65		494.16	1415.44	
up C2	up C3		up $C5$		up C7	up C8	

Table S39: Vibrational frequencies (cm⁻¹) of Perfluoroheptanoic acid, Perfluoro-3-Pentyl- α -lactone, and transition state TS71 at M06-2X/6-31G(2df,p) level of theory

C6-per	fluorinated	TS	5171	TS	5172	TS	5173
ald	lehyde						
C1	C2	C3	C4	C5	C6	C7	C8
52.40	664.46	42.30	554.33	38.25	572.62	38.39	564.36
56.30	682.19	59.19	603.49	40.63	606.94	58.00	599.24
75.89	730.52	75.39	635.35	52.11	626.79	64.45	628.72
83.21	777.94	81.92	650.80	68.05	659.98	84.96	662.68
121.67	791.89	112.18	666.16	78.70	673.48	102.47	669.08
129.23	950.19	124.50	681.48	98.36	695.24	139.99	677.20
156.24	1032.42	133.61	721.99	117.15	706.19	150.08	697.39
158.44	1115.70	155.48	778.66	145.25	770.68	184.71	775.57
182.38	1176.21	168.74	892.31	168.98	838.76	192.51	828.60
215.86	1215.22	184.54	972.77	187.38	902.79	241.83	919.60
232.16	1259.11	213.24	1052.51	202.71	987.42	257.44	981.29
254.91	1274.52	230.02	1117.12	221.84	1174.79	268.37	1059.26
268.48	1290.18	248.43	1156.65	227.12	1199.96	285.27	1114.71
282.59	1302.18	266.09	1210.45	241.94	1227.50	291.13	1142.28
300.04	1320.20	279.81	1250.54	250.31	1254.55	303.83	1198.01
307.42	1330.15	283.66	1267.58	273.65	1263.65	310.72	1230.40
320.17	1335.84	306.13	1276.50	282.37	1276.78	324.93	1252.24
334.85	1361.04	313.66	1291.86	297.28	1300.94	338.90	1274.64
362.96	1374.66	318.00	1310.74	314.67	1308.27	343.38	1295.43
376.46	1376.59	335.30	1321.38	315.69	1327.08	368.68	1303.18
386.11	1424.45	361.58	1331.27	336.56	1334.67	377.01	1313.41
409.75	2011.77	379.58	1353.71	362.73	1340.98	393.60	1330.55
473.24		385.03	1362.94	376.14	1349.25	406.78	1343.65
501.68		394.00	1374.07	380.11	1380.47	417.43	1347.79
540.40		445.22	1421.19	398.50	1395.47	449.19	1382.58
550.96		472.51	1474.16	427.35	1436.46	484.81	1401.05
581.04		498.09	2252.96	508.51	2341.91	513.29	1421.76
603.03		512.06		538.40		517.17	1978.48
652.15		551.15		552.13		555.56	2133.87
up $C2$		up C4		up C6		up C8	3823.30

Table S40: Vibrational frequencies (cm⁻¹) of C6-perfluorinated aldehyde, and transition states TS171, TS172, and TS173 at M06-2X/6-31G(2df,p) level of theory

Perfluorohexanoic		Perflu	10ro-3-	T	861	т¢	2161
:	acid	Butyl-a	α-lactone	1	501	1.	0101
C1	C2	C3	C4	C5	C6	C7	C8
41.38	641.50	25.09	720.61	36.20	674.63	33.52	720.63
54.80	663.59	55.91	779.81	57.46	682.10	53.54	779.11
69.99	680.20	76.55	837.87	70.89	739.45	74.89	897.83
76.50	720.33	111.01	937.15	99.07	778.18	105.49	998.20
118.95	779.38	119.06	1032.14	118.41	805.37	118.90	1093.29
121.18	800.23	134.93	1136.29	130.07	944.40	136.85	1138.57
145.25	952.74	171.32	1198.55	151.09	997.21	169.29	1208.56
161.66	1037.82	177.63	1215.43	161.57	1034.70	181.73	1258.00
184.99	1119.10	214.93	1269.45	185.67	1139.20	214.69	1267.06
217.85	1183.02	233.60	1276.61	196.56	1209.40	233.28	1288.09
234.72	1199.39	241.89	1291.81	218.57	1262.41	241.97	1304.67
248.45	1226.58	276.79	1319.68	239.34	1271.87	272.11	1329.67
268.74	1270.98	296.43	1332.24	264.26	1289.69	284.56	1331.99
280.63	1273.71	310.24	1348.49	270.42	1302.45	300.99	1354.07
303.87	1289.22	321.26	1371.16	295.62	1307.77	313.95	1373.56
308.34	1303.86	327.35	1374.34	305.54	1319.80	323.43	1422.05
319.94	1320.41	360.43	1387.34	309.63	1333.31	363.56	1473.86
333.01	1329.70	373.62	1422.76	322.93	1344.90	370.84	2253.15
361.51	1349.38	382.10	2119.97	328.82	1375.03	383.05	
376.09	1364.88	417.73		362.84	1416.25	408.46	
387.29	1377.97	488.19		379.58	1422.45	455.20	
402.13	1423.09	517.79		413.16	1518.48	486.50	
463.66	1444.97	551.48		443.63	1891.48	508.44	
500.62	1944.30	562.90		483.47	2644.56	545.96	
525.11	3816.57	589.05		498.40		560.29	
551.50		619.22		537.99		601.77	
572.03		661.78		552.34		636.59	
603.05		677.44		604.10		658.48	
634.21		711.34		650.66		678.20	
up $C2$		up C4		up C6		up C8	

Table S41: Vibrational frequencies (cm⁻¹) of Perfluorohexanoic acid, Perfluoro-3-Butyl- α -lactone, and transition states TS61, and TS161 at M06-2X/6-31G(2df,p) level of theory

C5-perfluorinated		TS	5162	TS	TS163		
ald	lehyde						
C1	C2	C3	C4	C5	C6		
39.23	1074.51	44.52	696.81	24.95	697.43		
59.44	1164.54	55.70	774.72	65.44	771.69		
85.96	1211.77	61.60	842.81	85.05	833.71		
107.28	1270.31	93.02	938.24	115.33	937.20		
138.32	1278.67	94.69	1079.08	140.38	1001.69		
156.97	1300.21	127.60	1201.65	163.82	1108.27		
176.26	1320.00	169.35	1224.15	185.29	1121.71		
218.33	1332.03	176.84	1256.04	221.09	1197.17		
242.53	1341.43	198.17	1266.05	245.92	1236.19		
248.74	1374.85	223.98	1293.42	259.35	1260.89		
277.79	1378.06	225.83	1318.82	288.34	1280.43		
295.78	1419.93	247.05	1329.57	298.93	1301.32		
309.70	2011.32	259.62	1330.67	310.48	1329.46		
326.96		282.31	1341.35	319.88	1335.79		
358.88		306.24	1370.68	330.22	1339.31		
376.44		316.62	1396.88	363.41	1364.12		
382.06		323.31	1431.25	373.83	1428.00		
432.05		346.84	2342.58	387.17	1430.83		
491.43		374.32		414.26	1976.98		
533.77		385.19		441.29	2136.98		
556.33		398.93		465.34	3822.10		
570.79		465.11		504.84			
613.59		529.47		515.34			
656.13		548.47		550.30			
678.02		579.95		578.38			
728.73		607.44		604.70			
777.40		659.46		635.36			
792.81		670.41		669.14			
969.21		676.12		674.24			
up C2		up C4		up C6			

Table S42: Vibrational frequencies (cm⁻¹) of C5-perfluorinated aldehyde, and transition states TS162, and TS163 at M06-2X/6-31G(2df,p) level of theory

Perfluo	ropentanoic	Perflu	ioro-3-	Т	S51	TS	151
	acid	Propyl-a	α -lactone				101
C1	C2	C3	C4	C5	C6	C7	C8
34.77	923.17	20.41	1217.33	36.13	984.34	37.24	1252.36
51.91	1078.26	42.79	1271.18	61.83	1114.80	45.50	1278.09
68.64	1194.34	75.49	1281.64	69.90	1210.67	67.03	1298.69
90.78	1201.38	95.87	1309.31	105.28	1259.21	120.21	1321.31
122.77	1242.82	156.89	1330.98	138.14	1272.39	123.84	1333.28
149.74	1273.74	197.40	1339.83	156.45	1296.89	184.38	1389.19
197.34	1282.07	223.30	1366.28	172.42	1299.02	211.64	1433.94
228.77	1301.31	236.14	1392.79	208.89	1325.85	240.50	1478.36
237.25	1303.15	236.81	1442.26	243.49	1339.36	247.22	2260.86
248.70	1336.85	287.77	2118.17	246.45	1384.26	290.03	
272.08	1339.70	300.22		256.47	1406.53	293.54	
296.24	1384.13	329.31		280.78	1433.44	321.61	
296.39	1434.94	350.13		297.44	1502.45	339.59	
332.83	1448.49	361.21		325.30	1891.83	366.27	
353.63	1941.76	386.04		337.82	2629.38	381.39	
384.61	3814.41	445.64		351.26		414.62	
388.87		527.30		380.38		469.65	
420.23		535.69		392.85		518.99	
509.10		550.82		422.55		543.51	
536.34		612.25		496.87		552.73	
542.76		627.42		549.36		602.25	
556.76		672.20		590.30		627.71	
607.95		712.08		602.18		679.34	
619.37		731.33		633.78		714.09	
647.92		775.67		691.27		775.35	
688.26		826.66		758.99		919.64	
718.80		935.80		772.24		1025.13	
775.08		1114.98		806.46		1116.08	
793.19		1193.43		942.16		1202.25	
up $C2$		up C4		up C6		up C8	

Table S43: Vibrational frequencies (cm⁻¹) of Perfluor opentanoic acid, Perfluoro-3-Propyl- α -lactone, and transition states TS51, and TS151 at M06-2X/6-31G(2df,p) level of theory

C4-perf	fluorinated lehyde	TS	152	TS	153
C1	C2	C3	C4	C5	C6
21.47	1367.45	29.14	1258.45	50.28	1167.32
51.01	1396.00	57.68	1281.36	72.22	1240.59
92.25	1431.89	69.72	1313.81	120.20	1284.03
124.32	2008.80	75.83	1329.43	158.08	1296.94
198.69		143.18	1331.54	182.10	1311.64
201.84		171.80	1342.50	234.14	1329.32
227.70		194.93	1391.40	257.52	1358.07
251.08		216.80	1434.59	288.95	1391.32
287.52		235.82	2341.72	292.25	1429.29
310.13		240.82		319.58	1981.03
335.33		277.55		331.39	2134.10
378.54		294.83		351.88	3825.59
383.12		318.73		369.01	
423.14		346.43		387.68	
512.61		363.36		414.59	
547.94		391.91		456.82	
606.13		408.34		497.40	
619.22		515.15		514.31	
707.37		549.75		554.13	
736.77		574.29		571.24	
784.40		619.20		599.01	
794.36		660.69		650.04	
946.08		679.61		669.76	
1173.25		698.36		682.23	
1213.70		768.58		772.71	
1255.47		848.58		840.11	
1295.44		964.66		957.15	
1310.12		1197.37		1046.47	
1334.19		1216.21		1116.46	
up C2		up C4		up C6	

Table S44: Vibrational frequencies (cm⁻¹) of C4-perfluorinated aldehyde, and transition states TS152, and TS153 at M06-2X/6-31G(2df,p) level of theory

Table S45: Vibrational frequencies (cm⁻¹) of Perfluorobutanoic acid (C₃F₇COOH), Perfluoro-3-Ethyl- α -lactone (C₃F₆CO₂), C3-perfluorinated aldehyde (C₃F₆O) and transition states TS41, TS141, TS142, and TS143 at M06-2X/6-31G(2df,p) level of theory

C_3F_7	COOH	$C_3F_6CO_2$	TS	541	TS141	TS142	C_3F_6O	TS143
C1	C2	C3	C4	C5	C6	C7	C8	C9
52.29	1313.77	33.16	15.37	1348.74	50.44	49.19	43.12	75.54
64.60	1337.15	77.26	86.15	1406.75	78.55	61.67	82.80	92.73
87.04	1355.18	123.49	105.20	1432.53	123.02	75.28	148.64	182.58
131.38	1418.55	164.86	148.31	1507.57	165.26	163.57	205.13	214.64
179.09	1436.56	217.70	181.49	1893.42	217.39	198.58	234.95	223.44
219.03	1969.14	245.80	209.59	2640.53	245.47	216.84	268.13	263.30
246.03	3838.57	273.57	218.21		269.57	248.70	337.61	314.19
268.96		326.79	250.52		299.96	269.52	362.18	327.00
296.04		330.02	271.92		329.92	293.54	424.59	354.25
321.75		363.35	296.22		355.76	348.19	425.57	379.85
345.98		393.45	331.58		395.21	382.73	550.11	426.84
380.56		462.77	347.79		427.94	384.71	598.52	472.62
392.87		521.86	385.54		494.99	448.46	677.71	523.62
458.84		574.37	415.30		549.88	549.28	730.90	555.00
519.28		601.32	439.86		559.45	598.41	785.37	576.44
539.22		670.20	555.93		610.94	620.43	810.97	614.27
558.03		697.19	566.16		671.40	674.33	1061.78	646.45
596.76		721.64	632.80		682.76	696.33	1213.55	667.22
607.56		783.63	640.68		783.65	764.04	1267.03	769.70
665.77		835.28	750.93		977.58	863.43	1324.03	860.86
724.74		1027.49	776.08		1056.83	1102.67	1334.60	998.97
777.26		1165.77	815.85		1171.71	1214.49	1381.06	1127.77
792.69		1209.67	996.10		1276.84	1268.50	1445.90	1132.52
1005.8	6	1275.37	1038.28		1290.53	1313.01	2006.62	1264.08
1131.8	2	1300.95	1170.66		1318.85	1322.23		1286.00
1199.1	4	1328.43	1272.07		1339.34	1335.26		1322.84
1259.3	0	1361.58	1284.36		1436.85	1344.13		1329.55
1274.0	9	1383.63	1299.25		1478.24	1420.99		1424.59
1299.8	2	1436.01	1332.08		2259.65	2335.05		1456.13
up $C2$		2120.64	up C5					1987.29
								2172.89
								3816.65

C ₂ F ₅ COOH	$C_2F_4CO_2$	TS1E	TS1E1	TS1E2	C_2F_4O	TS1E3
21.92	52.73	59.21	47.96	67.10	48.91	60.56
61.63	129.97	116.36	123.39	73.56	225.14	201.81
141.70	204.51	134.04	215.92	171.69	236.57	225.39
215.02	254.14	166.85	240.30	202.94	391.71	321.48
248.21	336.83	244.40	299.30	251.15	434.76	339.67
287.01	371.33	268.01	374.80	271.25	525.82	381.80
357.40	425.38	284.17	409.95	374.35	607.71	471.95
375.22	543.38	329.30	457.46	437.66	710.16	497.97
382.41	553.80	395.17	526.19	548.96	789.77	567.38
497.58	597.84	450.82	570.69	574.83	846.06	592.14
545.26	698.24	507.15	616.34	662.03	1177.78	606.50
556.06	722.41	572.65	677.38	692.42	1289.92	657.07
613.14	791.63	633.34	793.20	729.20	1345.84	757.22
641.93	841.50	718.41	999.09	910.10	1410.32	890.65
689.30	1113.12	774.22	1126.73	1254.04	2021.77	1036.77
781.27	1209.81	823.79	1306.13	1304.73		1144.20
793.16	1309.39	1045.27	1324.52	1326.11		1297.85
1048.83	1328.10	1086.64	1359.95	1341.09		1331.79
1176.50	1368.53	1230.33	1502.67	1374.02		1355.38
1203.00	1433.58	1281.73	2252.32	2338.67		1462.77
1240.99	2120.79	1288.93				1999.17
1258.59		1314.49				2181.73
1265.03		1390.75				3815.72
1350.11		1477.61				
1422.18		1845.53				
1893.57		2438.45				
3788.34						

Table S46: Vibrational frequencies (cm⁻¹) of Pentafluoropropionic acid (C₂F₅COOH), Perfluoro-3-Methyl- α -lactone (C₂F₄CO₂), perfluoroacetyl fluoride (C₂F₄O) and transition states TS1E, TS1E1, TS1E2, and TS1E3 at M06-2X/6-31G(2df,p) level of theory

	PFNA			TSN1				TSN2	
C1	C2	C3	C4	C5	C6	(27	C8	C9
42.75	349.13	1169.60	23.11	348.13	1194.31	18	.29	342.52	1123.83
44.81	368.15	1191.53	38.40	350.79	1211.97	38	.53	361.29	1153.39
57.45	377.08	1205.53	53.20	373.17	1244.08	47	.05	369.58	1195.12
65.42	383.98	1227.56	78.06	393.09	1250.69	60	.65	385.47	1221.84
69.12	387.98	1248.44	81.11	395.28	1271.40	72	.26	402.92	1255.69
81.79	416.10	1265.93	90.21	422.49	1284.44	86	.09	446.34	1267.30
103.76	458.52	1268.16	107.16	445.34	1288.65	103	3.70	464.02	1283.61
106.23	486.24	1280.26	108.50	454.99	1290.08	109	9.23	491.11	1287.03
138.76	498.88	1286.83	115.27	485.87	1301.34	132	2.58	494.37	1300.08
143.39	515.25	1297.35	131.62	503.67	1312.08	142	2.39	502.28	1307.26
149.72	525.68	1303.81	142.88	520.44	1315.87	150).27	515.59	1322.43
152.74	551.12	1323.00	156.05	550.69	1327.77	151	1.56	550.64	1328.89
158.08	572.63	1334.54	167.93	563.74	1333.04	163	3.33	577.82	1331.45
174.35	602.26	1339.71	172.00	603.07	1337.52	17().25	582.10	1336.08
193.47	629.84	1348.69	185.00	625.90	1345.85	190).99	602.61	1351.64
202.70	635.91	1359.26	206.14	645.78	1353.62	206	5.20	632.07	1361.63
229.89	646.97	1364.23	211.13	665.99	1376.92	229	9.97	652.35	1371.15
244.01	658.18	1369.07	249.89	670.24	1411.84	235	5.40	659.77	1383.26
250.22	671.36	1374.29	259.07	679.03	1437.86	245	5.80	679.26	1420.52
269.55	680.25	1420.59	265.56	704.88	1500.81	256	5.96	681.55	1554.67
279.91	684.63	1444.93	271.92	736.47	1894.19	272	2.44	691.69	1579.43
282.44	722.12	1944.64	287.67	775.67	2648.68	284	1.57	773.20	3870.88
291.46	778.33	3816.11	296.59	800.87		291	1.05	778.49	
308.40	800.81		305.46	900.24		304	1.79	832.11	
313.53	917.73		314.11	962.12		312	2.69	902.94	
314.07	974.04		326.45	995.13		316	5.99	948.61	
321.99	1027.31		332.71	1012.75		319	9.67	1007.43	
327.98	1084.87		338.89	1075.79		322	2.66	1068.50	
336.15	1132.11		344.15	1135.58		33().72	1083.95	
up C2	up C 3		up C5	up C6		up	C8	up C9	

Table S47: Vibrational frequencies (cm⁻¹) of Perfluorononanoic acid (PFNA), and transition state TSN1 and TSN2 at M06-2X/6-31G(2df,p) level of theory

	TN3			TSN4			TSN5	
C1	C2	C3	C4	C5	C6	C7	C8	C9
17.60	335.50	1136.02	21.52	347.63	1156.01	34.21	345.50	1152.70
22.67	351.43	1162.68	32.87	351.45	1205.24	45.73	368.61	1186.89
43.11	368.95	1194.97	37.51	367.30	1216.68	53.15	381.75	1218.33
53.48	379.80	1208.47	46.98	374.98	1224.12	59.76	386.85	1225.61
63.67	385.14	1228.24	52.64	381.56	1248.28	69.41	424.08	1249.02
67.47	394.89	1245.39	60.27	399.94	1276.23	79.40	456.52	1260.46
100.17	439.74	1267.38	76.55	439.32	1277.76	104.35	471.07	1268.90
101.15	476.71	1271.68	106.68	454.18	1290.92	106.38	483.94	1277.97
124.69	493.21	1276.37	107.02	471.00	1296.25	137.62	496.02	1286.14
143.45	502.69	1284.82	144.73	503.64	1302.37	146.83	506.48	1298.41
146.91	519.74	1300.03	147.65	526.34	1323.67	149.97	520.31	1323.13
153.97	551.35	1322.89	162.10	552.43	1331.06	154.10	551.69	1334.01
155.47	601.98	1333.78	168.44	589.01	1333.57	154.54	602.71	1337.59
170.10	614.90	1346.10	178.64	600.88	1337.10	174.31	634.64	1344.08
178.18	623.89	1353.81	211.08	611.08	1343.43	191.44	638.99	1354.54
192.29	628.66	1361.25	223.30	622.17	1352.19	203.62	658.66	1362.84
207.67	646.17	1367.03	231.90	663.28	1379.90	219.14	666.16	1363.64
219.01	660.28	1369.39	238.73	672.84	1424.65	230.45	673.05	1369.08
232.03	669.25	1377.35	256.17	685.78	1444.26	248.16	680.60	1419.12
248.86	679.34	1421.03	260.69	692.08	1575.81	272.49	683.35	1431.08
271.25	684.47	2029.09	267.21	709.77	2003.85	279.21	685.29	1594.24
281.17	715.33	2341.39	285.11	735.98	2261.65	285.31	753.54	3607.41
283.39	778.55		293.81	776.38		290.43	778.06	
290.37	903.86		299.88	791.41		312.89	846.62	
309.49	938.11		315.53	897.58		315.33	922.93	
313.09	967.69		320.79	948.90		317.22	971.00	
316.59	996.39		327.88	1020.75		320.33	1021.27	
323.88	1053.90		338.47	1034.54		330.58	1059.04	
327.02	1107.42		343.13	1109.76		336.31	1103.68	
up C2	up C3		up C5	up C6		up C8	up C9	

Table S48: Vibrational frequencies (cm⁻¹) of transition states TSN3, TSN4, and TSN5 at M06-2X/6-31G(2df,p) level of theory

TFA	TS1M	TS2M	TS3M	TS4M	TS5M
16.85	111.33	46.58	47.77	105.09	83.37
233.73	164.05	112.69	163.38	161.67	133.35
246.38	230.90	120.62	167.98	173.93	346.23
389.89	269.27	199.21	250.36	303.37	415.08
426.29	271.52	274.70	398.77	397.81	457.42
512.49	424.04	319.73	511.83	442.50	527.98
593.67	600.81	607.96	538.70	536.36	597.51
601.63	699.04	678.27	628.86	593.48	680.89
674.53	779.71	709.95	705.26	684.24	744.58
802.03	835.59	735.00	757.82	732.05	755.87
813.28	940.26	844.61	951.27	811.12	982.62
1167.64	1149.36	1096.61	1154.51	1100.16	1127.79
1207.84	1336.32	1308.47	1183.09	1323.74	1227.31
1223.15	1445.24	1384.70	1252.44	1424.64	1351.58
1290.58	1449.93	1396.14	1373.90	1446.04	1405.36
1438.76	1878.51	2143.96	2029.19	1840.75	1582.58
1900.89	2923.57	3090.71	2316.74	3872.31	3601.95
3805.75					

Table S49: Vibrational frequencies (cm⁻¹) of trifluoroacetic acid (TFA), and transition states TS1M, TS2M, TS3M, TS4M, and TS5M at M06-2X/6-31G(2df,p) level of theory

Table S50: Vibrational frequencies (cm⁻¹) of Difluoroacetolactone (CF₂CO₂), carbonyl fluoride (CF₂O), perfluoro-formic acid (FCOOH), and transition states TS1M1, TS1M2, TS1M3, and TS1M4 at M06-2X/6-31G(2df,p) level of theory

CF_2CO_2	TS1M1	TS1M2	CF_2O	TS1M3	FCOOH	TS1M4
202.49	182.74	115.43	595.63	325.12	520.89	433.60
358.81	309.18	222.78	635.05	433.98	569.55	679.76
469.29	478.34	239.86	816.37	465.61	630.75	763.62
516.51	507.72	436.69	1033.34	531.77	806.77	874.63
682.18	605.13	688.38	1354.05	533.58	993.40	1061.25
702.07	617.51	723.40	2050.20	675.58	1225.59	1355.36
747.10	835.78	730.62		759.22	1383.64	2108.68
849.10	1079.72	1318.45		958.05	2034.36	2339.56
1255.31	1227.50	1361.41		1126.89	3865.97	
1346.01	1520.53	1363.32		1225.92		
1414.09	2237.20	2177.52		1433.49		
2125.09				2012.74		
				2183.03		
				3831.18		

Cartesian Coordinates (Å) at M06-2X/6-31G(2df,p) level of theory

The optimized geometries of the key species observed in Fig. 1 (article) are given in Tables S51 – Table S56.

0	1			
\mathbf{F}		-0.93781800	-1.27558400	-1.47963800
F		0.62036900	-1.87017000	-0.08699000
\mathbf{F}		1.39695900	-0.17064800	-1.88570500
\mathbf{F}		-0.18151300	1.24114000	-1.39099100
F		-1.77387200	-1.93658700	0.90991700
F		-0.50810100	-0.45762800	1.86784800
F		2.17713800	1.98550600	-0.63207900
F		0.87868700	1.59808800	1.06196100
F		-3.06146800	0.14640800	1.78492300
F		-1.80253800	1.53324900	0.68013300
F		2.15326000	-0.62951700	1.64285400
F		3.51656800	1.03645400	1.35196300
F		-3.69908900	-1.03592400	-0.69994300
F		-2.73529700	0.65432300	-1.62470600
F		-4.35934600	0.96497400	-0.25683500
Ο		4.23947100	0.11517200	-1.04826100
Ο		3.49417600	-1.86444400	-0.27444800
\mathbf{C}		-0.22007400	-0.88853500	-0.41743500
\mathbf{C}		0.63185300	0.31153100	-0.89139900
\mathbf{C}		-1.20307400	-0.73779900	0.76443200
\mathbf{C}		1.58739700	1.02710100	0.08741800
\mathbf{C}		-2.33532200	0.31067000	0.67637500
\mathbf{C}		2.69985400	0.17210200	0.73456600
С		-3.30611000	0.21191900	-0.51992100
С		3.51947300	-0.67536300	-0.25806700
Н		4.73138700	-0.45234400	-1.65855500

Table S51: Cartesian coordinates (Å) of PFOA

0	1			
F		1.16065700	1.94632800	0.44865900
F		-0.48655400	1.11204400	1.60336000
F		-1.08869100	2.01519900	-0.82144100
F		0.28496800	0.62518000	-1.75195600
F		1.81790200	0.05620900	2.13863300
F		0.40771200	-1.34233400	1.26161300
F		-2.31107200	0.01217200	-1.88729900
F		-1.01401700	-1.44989400	-0.92150600
F		2.96545000	-1.78386900	0.74643700
F		1.73760700	-1.41210800	-1.00761200
F		-2.18491000	-0.94468200	1.40468900
F		-3.68929000	-1.86298900	-0.48453400
F		4.36608600	-0.50999100	-0.98714400
F		3.82722100	0.88361800	0.56421100
F		2.85260200	0.96803200	-1.35568000
Ο		-4.94035400	0.10255600	0.07110500
Ο		-3.25792600	1.51242700	0.80453100
\mathbf{C}		0.35190000	0.89399700	0.58304100
\mathbf{C}		-0.50857400	0.82773900	-0.69848200
\mathbf{C}		1.22201800	-0.31201000	1.00355900
\mathbf{C}		-1.61029900	-0.26742600	-0.79161000
\mathbf{C}		2.31614300	-0.84680000	0.05164000
\mathbf{C}		-2.61171800	-0.36933200	0.36052600
\mathbf{C}		3.36975800	0.16447200	-0.44473600
\mathbf{C}		-3.82516000	0.49129500	0.40381700
Н		-4.44920100	-1.22770000	-0.36548800

Table S52: Cartesian coordinates (Å) of TSO1

0	1			
F		1.56237900	1.89216900	0.09364700
F		0.14127500	1.85348400	1.70682200
F		-0.82931700	2.79131100	-0.49516200
F		-0.08043300	1.13176500	-1.67794300
F		1.51794700	-0.16732400	2.09272800
F		-0.21449500	-0.93705800	1.03183900
F		-2.97285500	1.66622200	-0.59001200
F		-2.13114500	0.94407100	1.46343500
F		2.07530400	-2.12837100	0.53460900
F		1.19689700	-1.18575400	-1.21349400
F		-1.31985400	-1.18188200	-1.41500300
F		-3.43402100	-0.61115500	-1.56172700
F		3.70405300	0.31998400	0.63166700
F		3.06746200	0.52061700	-1.42109400
F		4.03165900	-1.27948200	-0.76848000
Ο		-3.02363500	-1.17211100	1.66263000
Ο		-2.77886100	-2.77289400	0.04976100
\mathbf{C}		0.48802800	1.25306900	0.57932400
\mathbf{C}		-0.61554500	1.47609300	-0.49852600
\mathbf{C}		0.90385900	-0.19778400	0.91349300
\mathbf{C}		-2.01423100	0.81869400	-0.45900300
\mathbf{C}		1.83287000	-0.96174300	-0.06702800
\mathbf{C}		-2.31268100	-0.51319400	-0.84066000
\mathbf{C}		3.20072100	-0.31769700	-0.41079200
\mathbf{C}		-2.79133900	-1.74220100	0.60407400
Н		-2.56383000	0.01125700	1.66909700

Table S53: Cartesian coordinates (Å) of TSO2 $\,$

0	1			
F		-0.85999300	-0.99837000	-1.65233600
F		0.80715700	-1.62193500	-0.40690700
F		1.32003600	0.39585500	-1.94335100
F		-0.35606600	1.55577900	-1.18374200
F		-1.53440700	-2.09125400	0.62361900
F		-0.40379800	-0.63767500	1.77131200
F		2.02848400	2.34124800	-0.41525700
F		0.78262000	1.67558900	1.23893100
F		-3.00548700	-0.31211400	1.81830700
F		-1.92561400	1.35106200	0.92534900
F		2.18201000	-0.50504700	1.52791700
F		3.55096000	1.16213700	1.26225100
F		-3.59138600	-1.16389900	-0.80822800
F		-2.83917000	0.74145800	-1.47577600
F		-4.44281700	0.66332200	-0.05193500
Ο		3.96557300	-0.54803100	-1.45669000
Ο		3.77462500	-2.13479300	0.24466900
С		-0.14920500	-0.69308500	-0.56099100
\mathbf{C}		0.55913400	0.64566900	-0.85848100
\mathbf{C}		-1.09714400	-0.82884500	0.65050300
\mathbf{C}		1.50168700	1.26466400	0.19216200
\mathbf{C}		-2.33350500	0.09565100	0.73876800
\mathbf{C}		2.67087400	0.36096900	0.61939100
\mathbf{C}		-3.32553400	0.07770900	-0.44376400
\mathbf{C}		3.73089600	-1.21041800	-0.43031200
Н		3.32244800	0.18328500	-0.81887100

Table S54: Cartesian coordinates (Å) of TSO3 $\,$

0	1			
F		-0.89564600	-0.45398100	1.92544900
F		0.80038200	0.79522600	1.34501300
F		1.08008000	-1.84410100	1.07954400
F		-0.42887100	-1.90218200	-0.46721600
F		-1.55572200	1.90419000	1.03915100
F		-0.39921900	1.64833700	-0.78293000
F		2.24911200	-1.74153300	-1.22005300
F		0.82212200	-0.30640000	-2.01108300
F		-3.05549100	1.56471000	-1.02619200
F		-1.99770700	-0.22228900	-1.66697600
F		2.22061600	1.52262700	-1.07315000
F		4.57732800	0.31737900	-0.62386100
F		-3.65752400	0.24289700	1.35594300
F		-2.84668700	-1.55117800	0.48056900
F		-4.47807100	-0.53282100	-0.47918400
Ο		3.66131500	-0.85627500	1.05869500
Ο		3.68388500	1.42116200	1.18995300
С		-0.22363700	0.03917700	0.89203200
С		0.45948400	-1.13016000	0.15167000
С		-1.14693800	1.01806300	0.13308600
С		1.49550000	-0.68985500	-0.92535000
С		-2.39277700	0.48519400	-0.60892400
С		2.45149500	0.43951800	-0.49750400
С		-3.37285900	-0.36699500	0.21982700
\mathbf{C}		3.64785200	0.40601300	0.49185500
Н		3.81738100	-0.69275600	1.99544600

Table S55: Cartesian coordinates (Å) of TSO4 $\,$

0	1			
F		-0.93251500	-1.62202000	1.09598600
F		0.58043100	-0.28023700	1.88684900
F		1.37413700	-1.89684000	-0.04379000
F		-0.17197100	-1.17723800	-1.38325300
F		-1.83271900	0.63129300	2.03315900
F		-0.58617600	1.81240000	0.71027000
F		2.15666900	-0.30453100	-2.04218000
F		0.85485400	1.28026500	-1.37610500
F		-3.12831700	1.73198900	0.07678300
F		-1.83358300	0.86273400	-1.43712800
F		2.06998500	1.66750700	0.79682600
F		3.50933500	1.61505500	-0.72750100
F		-3.70821100	-0.89275300	0.91145800
F		-2.70163500	-1.57354300	-0.86718600
F		-4.35631800	-0.21682200	-1.02715300
Ο		4.77141400	-1.40092700	0.23095600
Ο		3.23452500	-0.19297700	1.24739500
\mathbf{C}		-0.22932900	-0.50686400	0.85283200
\mathbf{C}		0.64365500	-0.82749800	-0.38527700
\mathbf{C}		-1.24408100	0.66031100	0.83276300
\mathbf{C}		1.59387200	0.24283200	-0.96864300
\mathbf{C}		-2.36734400	0.67738900	-0.22992700
\mathbf{C}		2.69826300	0.81143200	-0.04310800
\mathbf{C}		-3.30492700	-0.54714200	-0.29783500
\mathbf{C}		3.77080500	-0.57520500	0.16148700
Η		4.94130800	-1.59562600	1.17612200

Table S56: Cartesian coordinates (Å) of TSO5

The optimized geometries of the key species observed in Fig. 6 (article) are given in Tables S57 – Table S62.

0	1			
F		-0.93753100	-0.49690000	1.91197000
F		0.69236200	0.92742700	1.68705300
F		1.35051800	-1.58081300	1.35651400
F		-0.08300100	-1.84764300	-0.25206100
F		-1.65344900	1.86119700	1.04874200
F		-0.27939100	1.77262400	-0.62963700
F		2.45939600	-1.64651900	-0.96972900
F		1.17246800	-0.08254100	-1.77042200
F		-2.82471800	1.45474800	-1.22598500
F		-1.57423300	-0.25787900	-1.70480700
F		2.32699100	1.73896500	-0.23346500
F		-3.64297400	0.06538000	1.07478100
F		-2.64901500	-1.66715800	0.26687700
F		-4.18602700	-0.68849000	-0.86802100
0		5.32748200	0.11584300	-0.50556900
0		3.50793100	0.14469600	0.99773600
С		-0.15156600	0.12328800	1.02763600
С		0.71133300	-0.96728500	0.35719700
С		-1.05428500	1.04505200	0.17860300
С		1.78064600	-0.53175300	-0.67258800
С		-2.15184600	0.42158900	-0.71363100
\mathbf{C}		2.79332500	0.50500000	-0.20574800
\mathbf{C}		-3.18472900	-0.49741800	-0.02872200
С		4.21947900	0.22554300	-0.13668500

Table S57: Cartesian coordinates (Å) of Perfluoro-3-Hexyl- α -lactone

0	1			
F		-1.01664000	-0.63511800	1.87990800
F		0.62195900	0.79743000	1.82514000
F		1.27732000	-1.70703300	1.33895200
F		-0.08095100	-1.82199000	-0.34863000
F		-1.69510900	1.77655800	1.16298000
F		-0.25097000	1.81479000	-0.45635000
F		2.49241400	-1.58601700	-0.95836800
F		1.25450000	0.05253900	-1.65882000
F		-2.76866900	1.55232200	-1.17980300
F		-1.50133300	-0.12171400	-1.74125300
F		2.36584700	1.72323900	-0.03086600
F		-3.68741000	-0.00303900	0.96494200
F		-2.65780900	-1.67482500	0.07817000
F		-4.14089400	-0.61022700	-1.05086700
Ο		5.30870100	0.15047100	-0.76303500
Ο		3.45513100	0.10196500	1.13518500
С		-0.19032900	0.04349500	1.07726700
С		0.69556300	-1.00470800	0.36802800
С		-1.05698400	1.02782600	0.25949500
С		1.80467300	-0.49682200	-0.57591800
С		-2.11673400	0.47979000	-0.72275900
С		2.83364700	0.46425000	0.06588200
\mathbf{C}		-3.17839000	-0.48455600	-0.15465500
С		4.20506300	0.29876900	-0.55124200
С		4.20506300	0.29876900	-0.55124200

Table S58: Cartesian coordinates (Å) of TS1O1

0	1			
F		4.04179700	1.69848700	-0.07950400
Ο		4.98312900	-1.81474400	-0.31405600
Ο		3.91091600	-0.47842300	1.25979300
\mathbf{C}		3.47231900	0.57819200	-0.39386200
\mathbf{C}		4.40597100	-1.06205000	0.34006500
\mathbf{C}		1.96989000	0.77900100	-0.06138700
F		1.74939600	1.14946900	1.19959900
F		1.59190200	1.77384800	-0.88388100
\mathbf{C}		1.13458100	-0.46236900	-0.41848400
F		1.09903700	-0.55973300	-1.74700100
F		1.73872200	-1.55562000	0.07358200
\mathbf{C}		-0.31888400	-0.52549300	0.11909000
F		-0.28580700	-0.65774900	1.44446000
F		-0.84626100	-1.62947000	-0.42525000
\mathbf{C}		-1.22416200	0.66260700	-0.23944600
\mathbf{C}		-2.67267300	0.59888400	0.30880100
F		-1.27119800	0.77615200	-1.56664500
F		-0.69958500	1.77534400	0.28528900
F		-3.30541200	1.64926100	-0.21862300
F		-2.63236400	0.72750500	1.63467400
\mathbf{C}		-3.50285000	-0.65781400	-0.01753300
F		-3.13272900	-1.66095100	0.75834600
F		-4.77572900	-0.39162600	0.21210800
F		-3.35371400	-0.99718500	-1.28597400

Table S59: Cartesian coordinates (Å) of TS1O2

0	1			
F		0.50484200	-0.53826700	-1.92233000
F		-1.10758100	0.90332100	-1.65433600
F		-1.77012400	-1.59269200	-1.27024100
F		-0.30643400	-1.84515100	0.31562800
F		1.29268500	1.80459500	-1.14085700
F		-0.05164700	1.81447400	0.56194700
F		-2.82380900	-1.54656900	1.10391300
F		-1.50645200	0.04531900	1.77825800
F		2.49480200	1.46989500	1.13883500
F		1.22779100	-0.20843400	1.69245300
F		-2.74225300	1.77772400	0.35613900
F		3.27216600	0.00566200	-1.11607400
F		2.23925800	-1.68591300	-0.27211400
F		3.80594300	-0.72482000	0.83830100
0		-4.11437100	0.25082000	-0.44717600
\mathbf{C}		-0.24041000	0.09927800	-1.01762300
\mathbf{C}		-1.09546000	-0.96841400	-0.30107300
\mathbf{C}		0.69641300	1.03773300	-0.22469500
\mathbf{C}		-2.13800900	-0.46985600	0.72313400
\mathbf{C}		1.79888000	0.43102900	0.67141300
\mathbf{C}		-3.13539200	0.54173000	0.13094900
\mathbf{C}		2.80602800	-0.52464600	-0.00015300

Table S60: Cartesian coordinates (Å) of C7-perfluorinated aldehyde

0	1			
F		0.11739600	-1.21969400	1.18732900
F		-0.89911900	-1.47510700	-0.71182500
F		-1.11863600	0.88777900	1.60646400
F		-0.33046800	1.71336700	-0.23900700
F		1.67219800	-1.60273100	-0.92514400
F		0.84928100	0.12911400	-1.92810500
F		-2.83556300	1.98907400	-0.16457200
F		-2.30445400	0.49896100	-1.63859900
F		2.38701800	1.61539500	-0.70790700
F		1.65346800	0.88168300	1.20388300
F		-3.59905000	-1.46051900	-0.75554300
F		4.07881800	-0.52042200	-0.84459100
F		3.33273300	-1.21374000	1.06320300
F		4.29401400	0.70413000	0.91044000
0		-4.50674400	0.21568300	0.78962900
С		-0.18212500	-0.62448500	0.03532600
С		-1.00225800	0.68022600	0.29691200
С		1.13522000	-0.39037800	-0.73843300
С		-2.41295400	0.73462000	-0.33697500
С		2.15635100	0.52400700	0.01249200
С		-3.48874100	-0.15368200	0.34276200
С		3.50797100	-0.15720300	0.28975600
Ο		-2.70034100	-1.30325700	1.18944400
Η		-3.04697100	-1.86268800	0.28624400
Н		-3.25587400	-1.46094800	1.96591100

Table S61: Cartesian coordinates (Å) of TS1O3 $\,$

0	1			
F		1.25437900	1.69378500	-1.31446700
F		-0.09456100	1.82857200	0.38178800
\mathbf{F}		-1.09492300	0.68763800	-1.76270700
\mathbf{F}		0.52549500	-0.76580900	-1.83499500
F		2.47979800	1.61135200	0.96193800
F		1.25721700	-0.02446800	1.70755500
F		-1.76688600	-1.73922100	-1.07143500
F		-0.29164800	-1.80770900	0.51888500
F		3.84563500	-0.55830200	0.86155200
F		2.27736400	-1.68863300	-0.07293600
F		-1.45299000	0.13509200	1.82488300
F		-2.87776000	-1.39041200	1.22255400
Ο		-3.82631400	0.16696900	-0.72932800
Ο		-2.96993600	1.85189600	0.49601100
\mathbf{C}		0.67707200	1.00275800	-0.32701900
\mathbf{C}		-0.23561600	-0.03032900	-1.02115000
С		1.79948900	0.51526200	0.61670400
С		-1.09096500	-1.00470700	-0.18462900
С		2.81692600	-0.48850000	0.03624000
С		-2.11225700	-0.37863300	0.79131400
С		-3.01441900	0.70762700	0.17437200
Η		-4.36892400	0.87883300	-1.09722300
F		3.23860500	-0.08973300	-1.15052900

Table S62: Cartesian coordinates (Å) of perfluor oheptanoic acid

The optimized geometries of the key species observed in Figure S2 are given in Tables S63 – Table S65.

0	1			
F		-2.13496600	2.03055100	0.10167500
\mathbf{F}		-0.60363100	1.49627300	-1.33860300
F		0.25664300	1.98147400	1.10051700
F		-1.10314500	0.51007100	1.94914200
F		-2.98134100	0.43671500	-1.75969000
F		-1.43065800	-1.03816100	-1.37701400
F		1.37855700	-0.20513400	1.98450500
F		0.17912500	-1.46677700	0.68848400
\mathbf{F}		-3.99702500	-1.53186600	-0.46504800
F		-2.43627500	-1.57493700	1.00846700
F		1.16477600	-0.36371200	-1.49807700
Ο		3.09736900	1.58171200	0.68847300
Ο		2.23790500	2.02524000	-1.34436200
\mathbf{C}		-1.31590900	1.05370600	-0.30258100
\mathbf{C}		-0.35656900	0.80788100	0.88266600
С		-2.20001200	-0.10356200	-0.82086700
\mathbf{C}		0.75591000	-0.26822900	0.80373500
\mathbf{C}		-3.12876400	-0.79229500	0.20122100
\mathbf{C}		1.78859600	-0.10227000	-0.33073000
\mathbf{C}		2.39055000	1.31159400	-0.40676200
Н		3.45365600	2.47654800	0.59243700
\mathbf{F}		-3.78223800	0.10461100	0.91751800
\mathbf{C}		2.92451500	-1.14853000	-0.22500000
F		3.80456300	-0.89118000	-1.18532400
F		2.44091200	-2.36263200	-0.41436900
F		3.54628600	-1.11217700	0.93721600

Table S63: Cartesian coordinates (Å) of iso-PFOA

0	1			
F		-1.87037200	1.38218200	1.65640800
F		-0.55561200	1.91175800	-0.00086700
F		0.44353500	0.45113000	1.97631300
F		-0.96813800	-1.13972500	1.61725200
F		-3.38989900	1.51042700	-0.24885500
F		-2.00496200	0.72672200	-1.71027700
F		0.67586300	-2.08374100	0.09561300
F		0.11281300	-0.49026000	-1.26029800
F		-4.09058600	-0.87418200	-1.16082800
F		-2.20171100	-1.73259900	-0.59442500
F		2.58927700	-0.93808100	-1.81328900
0		3.86641800	-1.84730600	-0.04363400
0		2.86736000	-0.69073400	1.70981500
\mathbf{C}		-1.28570600	0.93148300	0.54596100
С		-0.28860300	-0.15296700	1.04277300
С		-2.43531100	0.60090600	-0.45914200
С		0.64398100	-0.76422400	-0.06659700
С		-3.08477800	-0.78364000	-0.31383600
С		2.08948700	-0.26330700	-0.07289400
С		3.11267800	-1.08998700	0.56223500
Н		3.28319700	-1.48977600	-1.29014700
С		2.44075400	1.19918000	-0.37251500
F		3.73652100	1.28715800	-0.60471000
F		1.77766200	1.60594900	-1.43612300
F		2.13455900	1.96769200	0.65227000
F		-3.53433200	-0.94782800	0.91679300

Table S64: Cartesian coordinates (Å) of TSO1a

0	1			
F		2.31759800	1.86624600	-0.67439400
F		1.94480000	1.18652500	1.34626600
F		0.13478700	2.80937700	0.56896500
F		-0.08673100	1.87921400	-1.38021200
F		0.95144100	-1.20326500	0.25386900
F		1.58082100	-0.44037300	-1.69994800
F		-1.97449600	1.65827300	1.02660400
F		-0.34300000	0.35832300	2.00165400
F		3.33922100	-2.08400200	-0.67795700
F		4.12160600	-0.07951300	-0.62179100
F		-1.00141300	-0.58260800	-1.37933600
Ο		-1.42808100	-1.67553400	1.96229700
Ο		-1.72455000	-2.75625900	-0.03454000
\mathbf{C}		1.55556200	1.06754900	0.08149400
\mathbf{C}		0.11355200	1.64589800	-0.07874100
\mathbf{C}		1.79301100	-0.37659400	-0.38963400
С		-1.13836600	0.88798800	0.40813100
\mathbf{C}		3.22030700	-0.89750800	-0.11107200
С		-1.67806900	-0.22555600	-0.26921400
С		-1.58903400	-1.92947300	0.77576400
Η		-0.82482000	-0.58233800	2.11046800
F		3.42103700	-1.01795500	1.18722500
С		-3.17693700	-0.14661700	-0.53122100
F		-3.52111000	0.99793800	-1.11946700
F		-3.84320000	-0.22760300	0.61678200
F		-3.54739400	-1.13362400	-1.31998800

Table S65: Cartesian coordinates (Å) of TSO3a

The optimized geometries of the key species observed in Figure S7 are given in Tables S66 – Table S72.

0	1			
F		1.25437900	1.69378500	-1.31446700
F		-0.09456100	1.82857200	0.38178800
F		-1.09492300	0.68763800	-1.76270700
F		0.52549500	-0.76580900	-1.83499500
F		2.47979800	1.61135200	0.96193800
F		1.25721700	-0.02446800	1.70755500
F		-1.76688600	-1.73922100	-1.07143500
F		-0.29164800	-1.80770900	0.51888500
F		3.84563500	-0.55830200	0.86155200
F		2.27736400	-1.68863300	-0.07293600
F		-1.45299000	0.13509200	1.82488300
F		-2.87776000	-1.39041200	1.22255400
0		-3.82631400	0.16696900	-0.72932800
Ο		-2.96993600	1.85189600	0.49601100
С		0.67707200	1.00275800	-0.32701900
С		-0.23561600	-0.03032900	-1.02115000
С		1.79948900	0.51526200	0.61670400
С		-1.09096500	-1.00470700	-0.18462900
С		2.81692600	-0.48850000	0.03624000
С		-2.11225700	-0.37863300	0.79131400
С		-3.01441900	0.70762700	0.17437200
Η		-4.36892400	0.87883300	-1.09722300
F		3.23860500	-0.08973300	-1.15052900

Table S66: Cartesian coordinates (Å) of perfluoroheptanoic acid

0	1			
F		-1.56667000	2.08788800	0.36091200
F		-0.07430600	1.56316000	-1.13441700
F		0.72644600	1.66492400	1.43958200
F		-0.68046000	0.10095600	1.96113900
F		-2.55963400	0.81214100	-1.65638700
F		-1.11968500	-0.80949000	-1.50019300
F		1.90190900	-0.60770600	1.72670100
F		0.48146200	-1.64417800	0.43634400
F		-3.76981400	-1.17111500	-0.62571800
F		-2.17901300	-1.66153900	0.72850500
F		1.53081400	-0.47961500	-1.67904300
F		3.11501800	-1.96432000	-0.28056300
Ο		4.41033200	0.05062600	-0.29806200
0		2.74491500	1.65193100	-0.43701000
С		-0.84764900	1.09026600	-0.14951200
\mathbf{C}		0.08003300	0.60107600	0.98152400
С		-1.82581000	0.09036400	-0.80881900
С		1.12728000	-0.50057000	0.65109000
С		-2.80011300	-0.67046300	0.11668400
С		2.05027900	-0.26116400	-0.54480800
С		3.29354600	0.54579700	-0.41233100
Η		3.89202400	-1.33885800	-0.25460500
F		-3.31711200	0.14740200	1.01560700

Table S67: Cartesian coordinates (Å) of TS71
0	1			
F		1.32939000	-0.10001000	-2.10589900
F		-0.12722700	1.33492300	-1.36302000
F		-1.00123700	-1.13634100	-1.75657000
F		0.46212600	-1.93859300	-0.36307500
F		2.40077900	1.72479500	-0.62935200
F		1.01460800	1.39630200	1.01299300
F		-2.06052500	-1.76868500	0.50142600
F		-0.62481200	-0.60185500	1.65170700
F		3.63225000	0.42364900	1.18986400
F		2.02568800	-0.96250700	1.51760400
F		-1.63621400	1.65935800	0.77028800
Ο		-4.76977600	0.28635100	0.64989200
Ο		-2.96621700	0.61052200	-0.83811400
\mathbf{C}		0.64681600	0.29367800	-1.03032300
\mathbf{C}		-0.28822200	-0.87380800	-0.65943800
\mathbf{C}		1.66759500	0.81031900	0.00864900
\mathbf{C}		-1.29185800	-0.67331200	0.49981000
\mathbf{C}		2.64013500	-0.22633700	0.60996800
С		-2.21337500	0.53419700	0.39296000
\mathbf{C}		-3.65920400	0.40846400	0.29285500
F		3.12702100	-1.01039100	-0.33498000

Table S68: Cartesian coordinates (Å) of Perfluoro-3-Pentyl- $\alpha\text{-lactone}$

0	1			
F		1.44247600	1.59992800	1.34113700
F		-0.02732700	0.11886400	1.95876400
F		-0.90834800	2.13694100	0.44299800
F		0.45913400	1.58830700	-1.15320100
F		2.46497600	-0.74587800	1.61704500
F		0.98094500	-1.69452800	0.34336500
F		-2.10703300	0.91228800	-1.50789100
F		-0.72993000	-0.76478300	-1.46007200
F		3.56278600	-1.24242800	-0.63125000
F		1.91573100	-0.50028800	-1.79021100
F		-1.68315100	-1.63622000	0.75722600
Ο		-4.76302000	-0.75078500	-0.42814900
Ο		-2.89466500	0.24500500	1.17175600
\mathbf{C}		0.70482600	0.56567600	0.93311200
\mathbf{C}		-0.26535500	1.12130300	-0.12882800
\mathbf{C}		1.67593400	-0.57640300	0.55333600
\mathbf{C}		-1.32448000	0.16443200	-0.71203400
\mathbf{C}		2.59250800	-0.34678900	-0.66671800
\mathbf{C}		-2.25898500	-0.49574100	0.33036200
\mathbf{C}		-3.64786600	-0.71285700	-0.22844900
F		3.11885100	0.86430000	-0.63274800

Table S69: Cartesian coordinates (Å) of TS171

0	1			
F		3.25898400	1.95256300	-0.10326300
Ο		4.61261200	-1.41123000	-0.51395200
Ο		3.48437200	-0.26140100	1.16455400
\mathbf{C}		2.81881800	0.77746900	-0.42424300
\mathbf{C}		3.98968300	-0.75358400	0.19818600
\mathbf{C}		1.32623200	0.77078300	-0.00119000
F		1.13378300	1.07191300	1.28237100
F		0.76648300	1.73246500	-0.75841600
\mathbf{C}		0.63670400	-0.55640900	-0.35632100
F		0.61356700	-0.66496000	-1.68430900
F		1.35414700	-1.57434500	0.14245000
С		-0.79977300	-0.74510400	0.19007100
F		-0.73250900	-0.86308200	1.51586700
F		-1.25496900	-1.89097300	-0.32909100
С		-1.79423400	0.38053500	-0.15291600
С		-3.26702200	-0.01050800	0.09067900
F		-1.67223400	0.71783200	-1.43818600
F		-1.51724100	1.43511300	0.61684000
F		-3.66991600	-0.87779100	-0.81806800
F		-4.00989600	1.07808100	0.00495500
F		-3.40779100	-0.53882100	1.29435900

Table S70: Cartesian coordinates (Å) of TS172

0	1			
F		-0.81962600	-0.16535600	2.14013300
F		0.51607400	1.35227900	1.32828300
F		1.53626500	-1.07204400	1.62547800
F		0.04561400	-1.93055900	0.29253300
F		-2.08878100	1.60574800	0.78556300
F		-0.77695000	1.43344800	-0.93841700
F		2.48465300	-1.55914800	-0.74151600
F		0.93182100	-0.39718300	-1.72448900
F		-3.33339700	0.29588600	-1.02485300
F		-1.66650000	-0.97990400	-1.47664600
F		1.94609200	1.79968200	-0.93292500
Ο		3.55444000	0.76094500	0.16099000
С		-0.22950200	0.27579300	1.03065600
С		0.74348100	-0.83052400	0.57917700
С		-1.33701400	0.76604800	0.07042300
С		1.66597100	-0.51601600	-0.61782300
С		-2.27520800	-0.30799900	-0.51716000
С		2.52475700	0.74298800	-0.40163700
F		-2.66308800	-1.14610400	0.42799800

Table S71: Cartesian coordinates (Å) of C6-perfluorinated aldehyde

0	1			
F		0.54349900	1.20048300	-1.41084200
F		-0.35053700	1.56893700	0.53024400
F		-0.59303000	-0.98966200	-1.56384600
F		0.37662100	-1.61543900	0.27248700
F		2.23676800	1.83939600	0.51055500
F		1.55421400	0.20331900	1.75888900
F		-2.10567900	-2.03151600	0.42152600
F		-1.56079600	-0.39182000	1.72159700
F		3.03880900	-1.38133700	0.55489400
F		2.27269800	-0.77404600	-1.36228600
F		-3.03563900	1.40734900	0.78551000
0		-3.94516000	-0.44205200	-0.54717100
\mathbf{C}		0.36344100	0.69477400	-0.19337100
\mathbf{C}		-0.39473500	-0.66819900	-0.28738300
\mathbf{C}		1.74066200	0.60192400	0.50259400
\mathbf{C}		-1.74906100	-0.74560700	0.45633400
\mathbf{C}		2.76797600	-0.34203800	-0.20670100
\mathbf{C}		-2.92294000	0.02042900	-0.20981100
0		-2.26994200	1.13595600	-1.20309600
Н		-2.58565200	1.75022900	-0.32483300
Н		-2.88741800	1.19478700	-1.94582600
F		3.88549800	0.31278700	-0.45175000

Table S72: Cartesian coordinates (Å) of TS173

The optimized geometries of the key species observed in Figure S8 are given in Tables S73 – Table S79.

0	1			
F		-2.04136000	1.60275200	0.87677000
F		-0.73708300	1.46849800	-0.85853100
F		0.53000100	1.25164900	1.42168000
F		-0.82080100	-0.30386000	2.12521200
F		-3.33823900	0.42909100	-0.98049900
F		-1.72394700	-0.88082500	-1.51363200
F		1.53147200	-1.19778100	1.53581200
F		0.01936400	-1.94981200	0.16823600
F		0.87818400	-0.40361800	-1.77230000
F		2.51195300	-1.48341200	-0.82991500
0		3.31037800	0.71859700	0.45544500
0		2.16622600	1.81476200	-1.14592500
С		-1.31842600	0.77388300	0.11815800
С		-0.22414500	0.20472600	1.04758000
С		-2.29700100	-0.23712800	-0.51522500
С		0.73525500	-0.87599500	0.51446900
С		1.63200500	-0.48468800	-0.68031800
С		2.39294600	0.84290300	-0.49861800
Η		3.75556200	1.57316500	0.54557700
F		-2.70867700	-1.10848700	0.38961000

Table S73: Cartesian coordinates (Å) of Perfluorohexanoic acid

0	1			
F		-2.39400700	1.53988900	-0.49271900
F		-0.89927000	0.43696100	-1.63515900
F		0.03783400	2.14446600	0.21277800
F		-1.04368900	1.10822200	1.77873100
F		-3.28720800	-0.81775800	-1.02918000
F		-1.48544600	-1.80036400	-0.39356600
F		1.58137700	0.63647400	1.65780600
F		0.26302100	-1.09000600	1.44119600
F		1.01897400	-1.35324200	-1.07799400
F		2.87612600	-1.54852600	0.70664900
0		3.85346400	0.15389600	-0.66649200
Ο		1.96113500	1.18675400	-1.50994600
С		-1.50272900	0.55168200	-0.44793500
С		-0.44420800	0.96859400	0.59440900
С		-2.27487000	-0.75773600	-0.18592500
С		0.74453200	-0.00012400	0.84427400
С		1.55766900	-0.45222800	-0.36915900
С		2.67066500	0.37678300	-0.90500700
Η		3.55163600	-0.96775600	0.25680200
F		-2.73157900	-0.79825800	1.05043100

Table S74: Cartesian coordinates (Å) of TS61

0	1			
F		2.17138200	0.99929100	1.32436400
F		0.74387500	-0.62438000	1.59192000
F		-0.34185300	1.72887600	1.13163600
F		0.80085300	1.98853800	-0.70026900
F		3.20187600	-1.12939100	0.35208600
F		1.42253100	-1.70164100	-0.70491600
F		-1.74895300	1.40777400	-1.04594500
F		-0.37807000	-0.10278500	-1.81807900
F		-1.09690700	-1.80666300	0.08042000
Ο		-4.29855500	-0.59951200	-0.01447800
Ο		-2.33695200	-0.20053200	1.23605600
С		1.31790100	0.18831400	0.69874200
С		0.22190700	1.09364100	0.10124200
С		2.13754400	-0.67476600	-0.28273800
С		-0.90721500	0.42407200	-0.71078600
С		-1.71808700	-0.64453300	0.00764800
С		-3.15210900	-0.52584400	0.22189200
F		2.52353400	0.04427700	-1.32106500

Table S75: Cartesian coordinates (Å) of Perfluoro-3-Butyl- $\alpha\text{-lactone}$

0	1			
F		-2.26799600	1.07823100	-1.15248600
F		-0.82930300	-0.48605100	-1.63605300
F		0.21348400	1.88110500	-1.02298100
F		-0.79756800	1.89799700	0.89959700
F		-3.19608900	-1.15400400	-0.32195900
F		-1.35549800	-1.76446200	0.59889200
F		1.79668500	1.35439200	1.00835100
F		0.51141900	-0.25329200	1.70418500
F		1.15109700	-1.76578500	-0.28303500
Ο		4.33291300	-0.57597800	0.08176600
Ο		2.19972300	-0.10025000	-1.42336800
\mathbf{C}		-1.36316100	0.23716500	-0.64856900
\mathbf{C}		-0.25252800	1.11636700	-0.03721400
\mathbf{C}		-2.11145000	-0.72493200	0.29788900
\mathbf{C}		0.93995200	0.39661400	0.61938500
\mathbf{C}		1.73377400	-0.55160900	-0.30974800
\mathbf{C}		3.19977300	-0.59566500	0.05973100
F		-2.46392500	-0.10566600	1.41037700

Table S76: Cartesian coordinates (Å) of TS161

0	1			
F		2.57812900	1.97732700	-0.14272500
Ο		3.98282200	-1.36444300	-0.56910700
0		2.86513100	-0.22892300	1.12616400
\mathbf{C}		2.15260300	0.79355000	-0.45185400
\mathbf{C}		3.36154400	-0.71580000	0.15251800
\mathbf{C}		0.66996000	0.76077000	0.00100500
F		0.49555600	1.06810400	1.28591700
F		0.07559100	1.70468000	-0.75339300
\mathbf{C}		-0.00431500	-0.57899100	-0.33193500
F		-0.06955800	-0.68225000	-1.65970700
F		0.74561400	-1.58613100	0.13966500
\mathbf{C}		-1.41960900	-0.78834500	0.25045000
F		-1.32718100	-0.92181700	1.57324700
F		-1.88543800	-1.92254500	-0.27709900
\mathbf{C}		-2.44409900	0.32155500	-0.04579300
F		-3.64357200	-0.10578100	0.30277200
F		-2.44446700	0.61735300	-1.33369300
F		-2.15579900	1.40555900	0.65359500

Table S77: Cartesian coordinates (Å) of TS162

0	1			
F		1.66825400	1.28739100	1.21231500
F		0.47647200	-0.49283100	1.62436200
F		-0.92127500	1.66553000	1.06352500
F		0.09253900	1.92649800	-0.84438200
F		2.97060300	-0.70486100	0.31569300
F		1.25314900	-1.64710600	-0.56286000
F		-2.35232000	0.91863000	-1.01472100
F		-0.80128100	-0.45634800	-1.68029500
F		-1.28769000	-2.06454800	0.24836100
Ο		-2.85553500	-0.74386100	1.05922600
\mathbf{C}		0.91758200	0.33320800	0.66522500
\mathbf{C}		-0.31287400	1.03383000	0.05639900
\mathbf{C}		1.81668100	-0.48538000	-0.28668800
\mathbf{C}		-1.36068500	0.12561300	-0.61595600
\mathbf{C}		-1.94709600	-0.92853500	0.33957800
F		2.03073000	0.17636200	-1.40923600

Table S78: Cartesian coordinates (Å) of C5-perfluorinated aldehyde

0	1			
F		1.21196200	-1.06325500	1.51488600
F		0.42894500	-1.39784800	-0.48541100
F		-0.41369000	0.75750500	1.80641600
F		0.67649600	1.85093900	0.29357200
F		3.02890400	-1.20285700	-0.47832400
F		2.13255400	0.49717200	-1.44617400
F		-1.76192500	1.95523800	-0.27153400
F		-0.81896000	0.57231000	-1.64127500
F		-2.17661300	-1.48100900	-1.16502100
Ο		-3.48059400	0.05662100	0.23606100
\mathbf{C}		0.97231600	-0.49151900	0.33817600
\mathbf{C}		0.00463100	0.71956900	0.54127200
\mathbf{C}		2.32595200	-0.10042300	-0.28412900
\mathbf{C}		-1.23050200	0.73717000	-0.38895200
\mathbf{C}		-2.37205500	-0.24200100	0.00068700
Ο		-1.72889400	-1.41114500	0.93516800
Η		-1.84415400	-1.92636300	-0.04888800
Н		-2.43380000	-1.63297500	1.56006400
F		2.99808400	0.69611000	0.52582900

Table S79: Cartesian coordinates (Å) of TS163

The optimized geometries of the key species observed in Figure S9 are given in Tables S80 – Table S86.

0	1			
F		-1.65845100	-0.56235300	-1.62562500
F		-2.32724400	-1.57447100	0.17880500
0		-2.08857100	1.75730800	-0.60548800
0		-2.75699500	0.81739100	1.33025600
С		-1.62812600	-0.54183300	-0.29189800
С		-2.24279600	0.75791600	0.25871800
Н		-2.44548800	2.55585000	-0.19100500
С		-0.16984300	-0.75348200	0.17534800
F		-0.18463700	-0.94052800	1.49552300
F		0.29692800	-1.85193800	-0.42411400
С		0.76644900	0.42770500	-0.13403800
F		0.60632000	0.81928500	-1.39827200
F		0.43679400	1.43421500	0.68641000
С		2.26016500	0.11378700	0.07669200
F		2.45410000	-0.42095200	1.26940700
F		2.94361000	1.24139400	-0.00947700
F		2.68757100	-0.71998600	-0.85222100

Table S80: Cartesian coordinates (Å) of Perfluoropentanoic acid

0	1			
F		-1.68656600	0.09590400	1.90602700
F		-2.31958000	1.56996800	-0.11466100
Ο		-2.68996600	-1.56392700	0.49830100
Ο		-2.11286700	-0.74105200	-1.58945100
С		-1.62588200	0.50673100	-0.06123700
\mathbf{C}		-2.25446600	-0.80731100	-0.36379000
Н		-2.16999700	-0.72596200	1.60773100
\mathbf{C}		-0.12689200	0.80563100	-0.21143400
F		0.04154400	1.46674400	-1.35334700
F		0.21783600	1.60096200	0.80178100
\mathbf{C}		0.75717600	-0.45975800	-0.21369600
F		0.27044800	-1.33599900	0.67041600
F		0.73691600	-0.99512700	-1.42848600
С		2.22233000	-0.15269600	0.15770200
F		2.64167300	0.89144200	-0.53969800
F		2.96610900	-1.20107600	-0.13463700
F		2.32707200	0.10831700	1.44551600

Table S81: Cartesian coordinates (Å) of TS51

0	1			
F		-2.51256000	-1.47549900	-0.45847300
Ο		-2.72509900	1.93805000	-0.41612500
Ο		-2.29594600	0.20779800	1.13263000
\mathbf{C}		-1.79360400	-0.44152300	-0.05588400
\mathbf{C}		-2.35406500	0.90037600	-0.01403200
\mathbf{C}		-0.31092100	-0.80565500	0.00505200
F		-0.06882800	-1.43326800	1.15941700
F		-0.03961300	-1.62927200	-1.00788700
\mathbf{C}		0.59695900	0.42866300	-0.11097800
F		0.38857000	0.97202600	-1.31269700
F		0.25417600	1.30961900	0.83526200
\mathbf{C}		2.10174800	0.14005200	0.03795000
F		2.36284200	-0.29740200	1.25548200
F		2.76548300	1.26203100	-0.17116400
F		2.48633700	-0.76359700	-0.84490600

Table S82: Cartesian coordinates (Å) of Perfluoro-3-Propyl- $\alpha\text{-lactone}$

0	1			
F		-1.73663300	-1.16747200	-1.20487800
Ο		-3.07220200	1.82497800	-0.22204100
Ο		-2.78256200	-0.64172500	0.74862900
\mathbf{C}		-1.79437000	-0.45809100	-0.05528800
\mathbf{C}		-2.41629300	0.90164900	-0.23234800
\mathbf{C}		-0.36671100	-0.40082200	0.54131100
F		-0.34999000	0.61042500	1.42491500
F		-0.13638800	-1.54641500	1.17130100
\mathbf{C}		0.72962200	-0.15327900	-0.50678600
F		0.95846900	-1.27508600	-1.18189200
F		0.28827800	0.79688500	-1.34849200
\mathbf{C}		2.06577400	0.32716900	0.09113800
F		1.95983100	1.56996200	0.52339300
F		2.99896500	0.27545200	-0.84136400
F		2.40968800	-0.45994900	1.09691900

Table S83: Cartesian coordinates (Å) of TS151

0	1			
F		2.31372800	1.75265900	-0.14349700
0		3.18108900	-1.77507700	-0.48371500
0		2.20746700	-0.45129600	1.16309200
\mathbf{C}		1.71356800	0.64681400	-0.45122300
\mathbf{C}		2.64900700	-1.02490400	0.21061200
\mathbf{C}		0.23254100	0.85731800	-0.04562500
F		0.07286100	1.21389000	1.22995100
F		-0.18330700	1.86808400	-0.82713700
\mathbf{C}		-0.63650900	-0.36849000	-0.36855400
F		-0.70246500	-0.48650200	-1.69482400
F		-0.07725000	-1.47534600	0.13824200
С		-2.07180800	-0.28004700	0.18165000
F		-2.06593200	-0.39337200	1.49665400
F		-2.78808500	-1.26386200	-0.33202400
F		-2.61724400	0.87632100	-0.15582800

Table S84: Cartesian coordinates (Å) of TS152

Table S85: Cartesian coordinates (Å) of C4-perfluorinated aldehyde

0	1			
F		-3.11200600	-0.60400600	-0.00045700
Ο		-2.31607000	1.45102200	-0.00002300
С		-2.14262500	0.28943600	-0.00014200
С		-0.79337100	-0.44642000	0.00019500
F		-0.73284900	-1.22019200	1.08764900
F		-0.73263500	-1.22092800	-1.08672500
С		0.38846800	0.53274300	0.00001400
F		0.30658600	1.29107900	-1.09373900
F		0.30672200	1.29116700	1.09374400
С		1.77334800	-0.14219200	-0.00008200
F		1.92094100	-0.89230100	1.07720100
F		2.69715000	0.80139300	0.00016600
F		1.92093900	-0.89172100	-1.07780900

0	1			
F		1.89504800	-1.23352800	0.97214800
F		0.91808500	-1.31502100	-0.94206900
F		0.53574100	0.71078900	1.65247400
F		1.33065000	1.81025500	-0.03695600
F		-1.19435100	1.98526100	0.00518300
F		-0.58562500	0.71869800	-1.63848200
F		-1.79854000	-1.38755200	-1.04078900
Ο		-2.79908200	0.03282600	0.69414500
С		1.56691300	-0.52767900	-0.09276400
С		0.68711200	0.70088300	0.32630400
С		-0.71541500	0.78190500	-0.31859200
С		-1.76024900	-0.23049000	0.22147400
Ο		-0.93392400	-1.45111900	0.92483000
Н		-1.24873300	-1.90087300	-0.04707000
Н		-1.48937100	-1.72818200	1.66702900
F		2.66921200	-0.10804800	-0.68154300

Table S86: Cartesian coordinates (Å) of TS153

The optimized geometries of the key species observed in Figure S10 are given in Tables S87 – Table S93.

0	1			
F		-0.89681500	0.52482200	1.64879600
F		-1.59449500	1.67304100	-0.06808600
0		-1.62653200	-1.72301800	0.55549700
0		-2.12581600	-0.66658600	-1.34425400
С		-0.93354400	0.58228900	0.29996900
С		-1.64392100	-0.67108800	-0.26029300
Н		-1.22856600	-1.48865100	1.40387400
С		0.51671900	0.73073900	-0.20188800
F		0.49228100	1.02393800	-1.49932800
F		1.09218200	1.72564900	0.47423700
С		1.36998300	-0.53512000	-0.01894200
F		1.26686500	-0.98195900	1.22899700
F		0.94095000	-1.47956900	-0.84001600
F		2.63146800	-0.26763600	-0.27870100

Table S87: Cartesian coordinates (Å) of Perfluorobutanoic acid

0	1			
F		-1.27060900	0.31698600	1.79543700
F		-1.52668300	1.67320100	-0.37911900
Ο		-2.18385300	-1.39845300	0.39425300
Ο		-1.38464700	-0.72807100	-1.67470000
\mathbf{C}		-0.93871500	0.56591100	-0.17364100
\mathbf{C}		-1.63304600	-0.71666400	-0.46487000
Н		-1.75542100	-0.50399600	1.49940100
\mathbf{C}		0.58641800	0.72832000	-0.14740400
F		0.96458500	1.24433100	-1.31458500
F		0.87877400	1.58559600	0.82594400
\mathbf{C}		1.35585800	-0.58491900	0.09460200
F		1.29700900	-1.35135300	-0.97416900
F		2.61344000	-0.28879700	0.35571500
F		0.83018700	-1.22881900	1.12322700

Table S88: Cartesian coordinates (Å) of TS41

Table S89: Cartesian coordinates (Å) of Perfluoro-3-Ethyl- $\alpha\text{-lactone}$

0	1			
F		1.64709600	1.73221700	0.06373600
Ο		2.47161200	-1.49752800	-0.63950200
Ο		1.45039100	-0.32872300	1.14001100
\mathbf{C}		1.06111100	0.54661700	0.05539000
\mathbf{C}		1.83921100	-0.67035500	-0.09942200
\mathbf{C}		-0.43240300	0.70632500	-0.17282600
F		-0.89961200	1.65064200	0.64591800
\mathbf{F}		-0.62162500	1.09375800	-1.43686700
\mathbf{C}		-1.24290900	-0.57808500	0.06631300
F		-1.27652600	-0.86783100	1.35161800
\mathbf{F}		-2.47218700	-0.40476700	-0.37521600
F		-0.68004400	-1.58368600	-0.59372100

0	1			
F		1.72824800	1.62811900	0.03007200
Ο		2.39902200	-1.64344900	-0.53851700
Ο		1.31168200	-0.15752900	1.38478200
\mathbf{C}		1.07992100	0.46719700	0.27775200
\mathbf{C}		1.79543100	-0.70903900	-0.32227900
\mathbf{C}		-0.36865000	0.68222500	-0.21541100
F		-0.86175100	1.76531700	0.37767400
F		-0.35217900	0.86101500	-1.54159100
\mathbf{C}		-1.28303700	-0.51017700	0.09181100
F		-1.49920900	-0.62137500	1.38237300
F		-2.43493000	-0.36323500	-0.53496700
F		-0.69435900	-1.62244200	-0.35371300

Table S90: Cartesian coordinates (Å) of TS141

Table S91: Cartesian coordinates (Å) of TS142

0	1			
F		1.19143900	2.05542000	0.03270400
Ο		2.87449400	-1.07757300	-0.68159000
Ο		1.53924900	-0.32685200	1.06802700
С		0.86959600	0.89280400	-0.42876200
\mathbf{C}		2.14176000	-0.60224000	0.07146400
С		-0.62673000	0.70420000	-0.09628300
F		-1.00741400	1.35335200	1.00233500
F		-1.23588800	1.26235700	-1.15862200
С		-1.10012500	-0.76134600	0.00584000
F		-0.35888100	-1.53371900	-0.78209700
F		-1.00988400	-1.20114100	1.24476200
F		-2.35903300	-0.84350400	-0.38408900

0	1			
F		-2.52535100	-0.20039100	0.00018700
Ο		-1.32549100	1.64852300	-0.00003500
С		-1.39419800	0.47537600	0.00012700
С		-0.21901300	-0.50836900	-0.00010400
F		-0.29866200	-1.27887500	1.08709200
F		-0.29894800	-1.27839800	-1.08753700
С		1.14215500	0.19813500	0.00002800
F		1.25884900	0.94847600	1.07966600
F		2.09730900	-0.71505300	-0.00003600
F		1.25905500	0.94879300	-1.07937600

Table S92: Cartesian coordinates (Å) of C3-perfluorinated aldehyde

Table S93: Cartesian coordinates (Å) of TS143

0	1			
F		1.36459100	0.72002900	-1.29721500
F		2.33217800	-0.28039800	0.34106200
F		0.29893000	-1.62858400	-0.89143400
F		0.11741200	-1.28253900	1.24410000
F		-1.51861900	0.73854500	1.25857500
Ο		-2.29655000	-0.82542300	-0.48515800
\mathbf{C}		1.21860400	0.31638100	-0.04677900
\mathbf{C}		0.06840500	-0.70579900	0.04726900
\mathbf{C}		-1.36237200	-0.18839400	-0.17640600
Ο		-1.25800200	1.30559400	-0.80353000
Η		-1.44937900	1.51912000	0.26635400
Н		-2.06276200	1.39923900	-1.33380100
F		1.00559000	1.36707400	0.72629400

The optimized geometries of the key species observed in Figure S13 are given in Tables S94 – Table S103.

0	1			
F		-0.05762300	1.75942900	-0.16288200
F		-0.07856400	0.54954700	1.64997200
F		0.94567400	-0.44033400	-1.51412500
F		1.12770000	-1.45363400	0.37886500
F		2.17531500	0.39537800	0.04825100
0		-1.68054000	-1.25681100	0.47529100
Ο		-2.20753100	0.42631800	-0.92511400
С		-0.14560200	0.52256700	0.31419400
С		1.06440700	-0.27089500	-0.20469900
С		-1.48307300	-0.09096000	-0.13621500
Н		-2.52234000	-1.61380000	0.15816900

Table S94: Cartesian coordinates (Å) of Pentafluoropropionic acid

Table S95: Cartesian coordinates (Å) of TS1E

0	1			
0		-1.19471300	-1.73240400	0.02214100
0		-2.33647500	0.19111500	-0.58350100
Н		-1.54186300	1.42335100	-0.36303200
С		-0.22051500	-0.02627400	0.51461100
F		-0.09650300	0.07300500	1.77270100
F		-0.69989900	1.85241700	-0.03854600
С		-1.46754800	-0.53462900	-0.10970800
С		1.11643600	-0.07959300	-0.23220900
F		1.85138900	0.95161200	0.12925600
F		0.88831100	-0.04569700	-1.52516000
F		1.74793800	-1.19245500	0.08594300

0	1			
0		2.24566000	-0.70632000	-0.87746300
0		2.07846900	0.12096000	1.29848700
Η		1.03345400	0.57123600	0.99869800
С		-0.01928000	0.66674000	-0.14423700
F		-0.50056100	1.82517500	0.37607800
F		0.10146900	0.83050800	-1.47042100
С		1.92824400	-0.21347700	0.10848500
С		-1.07016700	-0.40627300	0.10112000
F		-1.27924100	-0.52065300	1.40946100
F		-2.22021200	-0.13668500	-0.49135600
F		-0.61915100	-1.57282300	-0.35255000

Table S96: Cartesian coordinates (Å) of TS2E

Table S97: Cartesian coordinates (Å) of TS3E

0	1			
\mathbf{F}		-0.21252600	1.77837800	0.25919300
\mathbf{F}		0.91783100	0.00675700	-1.14502700
\mathbf{F}		-2.15965600	-0.01482100	1.06547500
\mathbf{F}		-1.10707000	-1.49281300	-0.10133700
F		-1.86389100	0.28463400	-1.05011300
Ο		1.76798100	-1.37453600	0.35194500
Ο		2.58458500	0.74788200	0.22870700
\mathbf{C}		-0.02277600	0.52551200	0.43650400
\mathbf{C}		-1.32068200	-0.20519000	0.05041300
С		1.75662400	-0.07719400	0.04136300
Н		2.52827400	-1.50476000	0.93140200

0	1			
Ο		2.55242300	-0.08929600	-0.14819000
Ο		1.23817500	1.75880500	0.10738800
Η		-0.10017500	1.90799900	-0.01063500
С		0.20380100	-0.69451600	0.03634200
F		0.47636100	-1.31160000	1.19255500
F		0.49125900	-1.47457200	-1.00718800
С		-1.16401900	-0.27328700	-0.00443000
F		-1.82149400	-0.27985900	-1.08506900
F		-1.08879700	1.76621400	-0.12132100
F		-1.84823500	-0.15392200	1.05319900
С		1.60914000	0.60440000	-0.02399900

Table S98: Cartesian coordinates (Å) of TS4E

Table S99: Cartesian coordinates (Å) of Perfluoro-3-Methyl- $\alpha\text{-lactone}$

0	1			
0		-1.14747700	0.21566300	1.12407900
Ο		-2.58521700	-0.67971000	-0.51980100
\mathbf{C}		-0.33558000	0.48766000	-0.03971000
F		-0.17585600	1.76550800	-0.32821700
С		-1.63106600	-0.16925900	-0.06614000
С		0.99034800	-0.25035400	-0.03910300
\mathbf{F}		1.58564500	-0.10428000	-1.20961600
F		0.78383600	-1.53474100	0.19226800
F		1.77519100	0.24063500	0.90506400

0	1			
\mathbf{F}		0.74320900	-1.50368500	-0.39258600
F		1.36225000	-0.29121700	1.27314700
F		-0.21144000	1.67701200	0.58147900
Ο		-2.57477400	-0.79165300	0.32890200
Ο		-0.94629600	0.57556200	-1.26880600
\mathbf{C}		0.95588700	-0.25953200	0.01429400
С		-0.35455800	0.53965200	-0.12649000
С		-1.57466500	-0.26096200	0.27455900
F		1.88471200	0.29719800	-0.73481300

Table S100: Cartesian coordinates (Å) of TS1E1

Table S101: Cartesian coordinates (Å) of TS1E2

0 1	
0 1	
F -0.10751600 1.80826900 -0.09241700	
O 2.81261400 -0.35382900 -0.65576500	
O 1.28092200 -0.07650100 1.07186200	
C 0.15947700 0.60450300 -0.47887400	
C 1.94843200 -0.16154700 0.08349400	
C -1.04497400 -0.26453300 -0.06880500	
F -1.97563600 -0.04268300 -0.99430500	
F -1.54709900 0.04092200 1.11417600	
F -0.71707100 -1.54294100 -0.08786100	

Table S102: Cartesian coordinates (Å) of perfluoroacetyl fluoride

0	1			
Ο		1.55594800	1.15069100	0.00005000
\mathbf{C}		0.94222200	0.15069900	-0.00002600
F		1.47685800	-1.05407600	-0.00009200
\mathbf{C}		-0.58869700	0.02073900	-0.00005000
F		-0.97636000	-0.64629600	-1.07607800
F		-1.14321300	1.21158600	0.00113900
F		-0.97603400	-0.64834100	1.07503800

0	1			
F		-1.44558300	-0.75606500	-0.89492300
F		-0.87572200	1.27275300	-0.47644400
F		1.25171500	0.88278000	0.95648900
Ο		1.00371200	-1.52391100	0.43876300
С		-0.81265500	0.03196600	-0.03747700
С		0.62849600	-0.46798800	0.09653400
Ο		1.43337500	0.26066600	-1.10569200
Η		1.66465300	0.91375400	-0.24327000
Η		2.17173700	-0.33736000	-1.29232800
F		-1.40020200	-0.04994500	1.13895500

Table S103: Cartesian coordinates (Å) of TS1E3

The optimized geometries of the key species observed in Figure 8 and Figure 12 (article) are given in Tables S104 – Table S116.

0	1			
F		-0.98626600	-0.67272100	-1.07545800
F		-1.17922600	1.18135800	-0.00017400
F		-0.98658100	-0.67254800	1.07546600
Ο		1.50576800	-1.03826600	0.00001200
Ο		1.48489400	1.21436700	0.00000100
\mathbf{C}		-0.60050600	0.00010700	0.00000500
\mathbf{C}		0.93044300	0.16146100	0.00024000
Η		2.46375100	-0.90301100	-0.00008400

Table S104: Cartesian coordinates (Å) of trifluoroacetic acid (TFA)

Table S105: Cartesian coordinates (Å) of TS1M

0	1			
F		0.91707800	-0.90766400	1.04804700
F		1.17081200	1.59335300	0.00001100
F		0.91701900	-0.90762000	-1.04809000
Ο		-1.29030800	1.29319900	0.00000300
Ο		-1.61212400	-0.99172900	0.00001600
\mathbf{C}		0.36737800	-0.47283400	0.00000400
С		-1.04447400	0.10171500	0.00001600
Н		0.23784500	1.81233400	0.00001100

0	1			
F		-1.21555100	-0.75581000	-1.03592200
\mathbf{F}		-0.98445600	1.59270100	0.00008900
F		-1.21542500	-0.75585100	1.03591800
Ο		1.39683000	1.15490700	-0.00007300
Ο		1.87246100	-1.09117100	0.00003800
\mathbf{C}		-0.55202400	-0.43748300	-0.00004000
С		1.31948300	-0.05056500	-0.00003800
Н		-0.02019300	1.68905100	-0.00001400

Table S106: Cartesian coordinates (Å) of TS2M

Table S107: Cartesian coordinates (Å) of TS3M

0	1			
F		-0.91570600	0.72477900	-1.07530600
F		-0.91497300	0.72327300	1.07637700
F		-1.63043800	-1.00125200	-0.00050800
Ο		1.55711100	-1.30491800	-0.00026000
0		1.76812900	1.01699400	-0.00013800
С		-0.69680700	-0.02834600	-0.00006600
С		1.39183900	-0.07017600	-0.00004100
Н		0.37794200	-1.12667400	-0.00124400

Table S108: Cartesian coordinates (Å) of TS4M

0	1			
F		-1.50520000	-1.06910300	-0.14699500
F		-1.56051200	1.00834400	-0.18985100
F		0.33869800	0.01870100	1.31248400
Ο		1.37090200	-1.10219100	-0.33341700
Ο		1.38067900	1.17549100	-0.38655200
\mathbf{C}		-0.82351800	-0.01253500	-0.29633200
\mathbf{C}		0.88419000	0.13627900	-0.06453200
Н		2.16645700	-0.95034300	-0.85581000

0	1			
F		0.90669100	1.26561600	-0.47742900
F		1.44195200	-0.73144800	-0.71933200
F		1.03021100	-0.02905200	1.26269400
Ο		-2.41166700	0.34606400	-0.04465400
Ο		-0.68661300	-1.01001600	-0.10409500
С		0.66485500	0.05589900	0.01607200
С		-1.13541900	0.15463000	0.14283200
Н		-2.80006600	-0.49760300	-0.35683100

Table S109: Cartesian coordinates (Å) of TS5M

Table S110: Cartesian coordinates (Å) of Difluoroacetolactone

0	1			
F		1.21626100	1.07255200	-0.23981800
F		1.21626000	-1.07255300	-0.23981600
0		-2.06842500	-0.00000100	-0.46934300
Ο		-0.30930100	0.00000100	1.11368500
С		0.48530000	0.00000000	-0.06534500
С		-0.96378000	0.00000000	-0.07432700

Table S111: Cartesian coordinates (Å) of TS1M1

0	1			
F		-1.13378200	-1.06702900	-0.35149200
F		-1.13378500	1.06702500	-0.35149800
0		2.12967900	0.00000000	-0.32762500
0		0.02802200	0.00000400	1.26086400
\mathbf{C}		-0.47011800	0.00000000	0.08435700
С		0.99453600	0.00000100	-0.27419300

0	1			
F		-1.33491800	-1.04023600	-0.12692200
F		-1.33483800	1.04078700	-0.12336400
Ο		1.96138500	0.00141900	-0.72299500
Ο		0.68861600	-0.00239500	1.21083000
С		-0.62206700	0.00061300	-0.33727700
С		1.09336600	-0.00013900	0.06225900

Table S112: Cartesian coordinates (Å) of $\mathrm{TS1M2}$

Table S113: Cartesian coordinates (Å) of carbonyl fluoride

0	1			
F		0.00000000	1.05442500	-0.62756700
F		0.00000000	-1.05442500	-0.62756700
Ο		0.00000000	0.00000000	1.30825300
С		0.00000000	0.00000000	0.13836300

Table S114: Cartesian coordinates (Å) of TS1M3

0	1			
F		0.60558800	0.80661500	0.90199600
F		-0.86934300	-0.92961800	0.61267000
0		1.15511600	-0.64578000	-0.70020300
\mathbf{C}		0.37600600	-0.03274100	-0.08580700
0		-0.84747300	0.63287000	-0.85087600
Н		-1.36047500	-0.11967200	-0.20232600
Н		-0.98289800	1.52641700	-0.50619400

0	1			
F		0.17180600	1.21852700	0.00001000
Ο		0.95322500	-0.81579300	-0.00002300
Ο		-1.25351300	-0.46784600	0.00009500
С		-0.14546200	-0.07571000	-0.00010100
Н		1.72882200	-0.24337600	-0.00006100

Table S115: Cartesian coordinates (Å) of perfluoro-formic acid

Table S116: Cartesian coordinates (Å) of $\mathrm{TS1M4}$

0	1			
F		-1.03635200	-0.82456800	0.00000200
Ο		-0.33902400	1.16765300	0.00000200
Ο		1.38312600	-0.39459200	-0.00000300
\mathbf{C}		0.36489500	0.14185400	0.00000500
Η		-1.21502000	0.38550300	-0.00004200