Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Manuscript Title: Recovery of Per- and Polyfluoroalkyl Substances After Solvent Evaporation

Authors:

Page number: 20

Figure number: 10

Table number: 4

Supplemental Methods

UPLC-MS analysis- All samples were run on an Agilent 6495C triple guadrupole mass spectrometer with a 1290 Infinity II liquid chromatograph system. A 100 µL aliquot of each sample is injected onto an LC system with 100 µL sample loop and separated on a Phenomenex Kinetex F5 analytical column (2.1 x 100 mm, 2.6 µm particle size; Phenomenex, Torrance, CA). The aqueous mobile phase (A) is 5% HPLC-grade acetonitrile in water with 0.1% formic acid and the organic mobile phase (B) is 5% water in HPLC-grade acetonitrile with 0.1% formic acid. Gradient: initial 20% B to 99% B at 7 min and held 99% B until 8 min, then to 20% B at 8.01 min and held at 20% B until 10 min for a total analysis time of 10 min. Flow rate was 0.5 mL/min at a column temperature of 45 °C. A 3 second needle wash was included before each injection to eliminate cross contamination. The LC had also been retrofitted with non-Teflon tubing and an InfinityLab Poroshell HPH-C18 delay column (3.0 x 50 mm, 4µm; Agilent, Santa Clara, CA) installed in the solvent path prior to the sample injection to delay any PFAS present in the LC eluent. A dynamic multiple reaction monitoring (DMRM) method was used to measure the quant and qual ions of the analytes (Table S2) with instrument parameters as follows: Drying gas temperature: 100°C; Drying gas flow rate: 15 L/min; Sheath gas temperature: 300°C; Sheath gas flow rate: 11 L/min; Nebulizer pressure: 15 psi; Capillary voltage: 2,000 V (-) and 3,000 V (+); Nozzle voltage: 0 V (-) and 1,500 V (+); High Pressure RF: 90 V (-) and 150 V (+); Low Pressure RF: 60 V (-) and 60 V (+); Delta EMV: 200 (-) and 0 (+). For this LC method (solvents and column) previous validation data (Enders et al Rapid Commun Mass Spectrom 2022, 36(11):e9295) showed no carryover up as high as 10,000 ng/L. Samples were run in increasing concentration order to further minimize the potential for carryover. All samples with a high concentration were run with three subsequent solvent blanks.

Data analysis- Samples were analyzed using Agilent Quantitative Analysis software version 10.0. Peak areas were exported for the comparison analysis. The comparison was done by averaging the controls responses and then normalizing each treatment replicate to the control to obtain a ratio that can be compared among analytes. Those ratios were then plotted in GraphPad Prism (version 9.3.0) as a bar graph with replicates shown as seen in supplemental **Figures S1-S10**. A non-normalized heat map showing the average normalized ratio for each treatment per compound and concentration was used to show trends across compound class and concentrations, **Figure 3**. For the recovery study, **Figure 1**, the same normalization was performed, and either an unpaired two-tailed student T test or a Welch's T Test were used to determine the significance difference between the reconstitution methods. Welch's T test was employed when p-value for the F-test was significant (P< 0.05) which indicated that the variance between the two treatments was not equal and therefore a T test with a correction factor needed to be employed. See supplementary **Table S3** for statistical results of related figures.

Data Repository- The raw data can be found in an online repository at panoramaweb.org or by clicking this <u>link</u>. If the link does not work, navigate to <u>https://panoramaweb.org/</u> using a web browser of your choice. Then click the Home button in the upper left-hand corner to drop down a list of projects. Scroll down to and click "NCSU- METRIC", click METRIC Public Data, click the folder labeled "RECOVERY OF PER- AND POLYFLUOROALKYL SUBSTANCES AFTER SOLVENT EVAPORATION", and finally click the "Raw Data" button in the upper right hand corner of the page to access the raw files.

Abbreviation	Analyte	CAS #	CCL*	Vendor †							
Perfluoroalkyl carboxylic acids (PFCA)											
PFBA	Perfluorobutanoic acid	375-22-4	4	CIL							
PFPeA	Perfluoropentanoic acid	2706-90-3	5	CIL							
PFHxA	Perfluorohexanoic acid	307-24-4	6	CIL							
PFHpA	Perfluoroheptanoic acid	375-85-9	7	CIL							
PFOA	Perfluorooctanoic acid	335-67-1	8	CIL							
PFNA	Perfluorononanoic acid	375-95-1	9	CIL							
PFDA	Perfluorodecanoic acid	335-76-2	10	CIL							
PFUnDA	Perfluoroundecanoic acid	2058-94-8	11	CIL							
PFDoDA	Perfluorododecanoic acid	307-55-1	12	CIL							
PFTrDA	Perfluorotridecanoic acid	72629-94-8	13	CIL							
PFTeDA	Perfluorotetradecanoic acid	376-06-7	14	CIL							
PFHxDA	Perfluorohexadecanoic acid	67905-19-5	16	CIL							
PFODA	Perfluorooctadecanoic acid	16517-11-6	18	CIL							
Perfluoroalkyl sulfonic acids (PFSA)										
PFBS	Perfluorobutanesulfonic acid	375-73-5	4	CIL							
PFPeS	Perfluoropentanesulfonic acid	2706-91-4	5	CIL							
PFHxS	Perfluorohexanesulfonic acid	355-46-4	6	CIL							
PFHpS	Perfluoroheptanesulfonic acid	375-92-8	7	CIL							
PFOS	Perfluorooctanesulfonic acid	1763-23-1	8	CIL							
PFNS	Perfluorononanesulfonic acid	68259-12-1	9	CIL							
PFDS	Perfluorodecanesulfonic acid	2806-15-7	10	CIL							
Perfluoroether carboxylic acid	s (PFECA)										
PFMOAA	Perfluoro-2-methoxyacetic acid	674-13-5	-	CIL							
PMPA	Perfluoro-2-methoxypropanoic acid	377-73-1	-	CH							
PEPA	Perfluoro-2-ethoxypropanoic acid	267239-61-2	- 2	FL							
PFO2HxA	Perfluoro-3,5-dioxahexanoic acid	39492-88-1	-	CH							
PFO3OA	Perfluoro-3,5,7-trioxaoctanoic acid	39492-89-2	-	FL							
Gen-X	Perfluoro-2-propoxypropanoic acid	13252-13-6	-	CIL							
PFO4DA	Perfluoro-3,5,7,9-butaoxadecanoic acid	39492-90-5	-	FL							
PFO5DoDA	Perfluoro-3,5,7,9,11- pentaoxadodecanoic acid 2,2,3,3-Tetrafluoro-3-{[1,1,1,2,3,3-	39492-91-6	-	FL							
Hydro-EVE	hexafluoro-3-(1,2,2,2- tetrafluoroethoxy)propan-2- yl]oxy}propanoic acid	773804-62-9) -	СН							
ADONA	4,8-Dioxa-3H-perfluorononanoic acid	919005-14-4	+ -	CIL							

Table S1- Analyte list with CAS #, full chemical name and vendor source.

Perfluoroether sulfonic acids (PFESA)

NBP 1	Perfluoro-3,6-dioxa-4-methyl-7- octene-1-sulfonic acid	29311-67-9	-	CIL
NBP 2	Perfluoro-2-{[perfluoro-3- (perfluoroethoxy)-2- propanyl]oxy}ethanesulfonic acid	749836-20-2	-	CIL
NBP 4	Pentanoic acid, 2,2,3,3,4,5,5,5- octafluoro-4-(1,1,2,2-tetrafluoro-2- sulfoethoxy)-	2416366-18- 0		СН
NVHOS	1-(1,1,2,2-tetrafluoro-2- sulfoethoxy)-1,2,2,2- tetafluoroethane	1132933-86- 8		СН
F53B Major	9-chlorohexadecafluoro-3- oxanonane-1-sulfonate	73606-19-6	-	CIL
F53B Minor	11-chloroeicosafluoro-3- oxaundecane-1-sulfonate	83329-89-9	-	CIL
Perfluoroalkyl sulfonamides (I	PFSAm)			
FBSA	Perfluorobutane sulfonamide	30334-69-1	4	CIL
FHxSA	Perfluorohexane sulfonamide	41997-13-1	6	CIL
	N-methyl			
NMeFOSAA	perfluorooctanesulfonamidoacetic acid N-ethyl	2355-31-9	8	CIL
NEtFOSAA	perfluorooctanesulfonamidoacetic acid	2991-50-6	8	CIL
FOSA	Perfluorooctane sulfonamide	754-91-6	8	CIL
MeFOSA	Methylperfluorooctanesulfonamide	31506-32-8	8	CIL
Fluorotelomer sulfonic acids (FTS)				
4:2 FTS	4:2 Fluorotelomer sulfonic acid	757124-72-4	6	CIL
6:2 FTS	6:2 Fluorotelomer sulfonic acid	27619-97-2	8	CIL
8:2 FTS	8:2 Fluorotelomer sulfonic acid	39108-34-4	10	CIL
10:2 FTS	10:2 Fluorotelomer sulfonic acid	120226-60-0	12	CIL
Zwitterions				
N-AP-FHxSA	N-(3-dimethylaminopropan-1- yl)perfluoro-1-hexane-sulfonamide N-[3-(perfluoro-1-	50598-28-2	6	CIL
N-TAmP-FHxSA	hexanesulfonamido)propan-1-yl]- N,N,N-trimethylammonium	38850-51-0	6	CIL
N-CMAmP-62FOSA (62 FTAB)	6:2 Fluorotelomer sulfonamide betaine	34455-29-3	8	CIL

*Abbreviations: Carbon Chain Length (CCL) *Source: CIL- Cambridge Isotope Laboratories, CH- Chemours, FL-Fluoryx

Compound Name	Precusor Ion	MS1 Resolution	Product Ion	MS2 Resolution	Fragment (V)	Collision Energy (V)	Cell Acceler ator (V)	Retention Time (min)	Retention Window	Polarity		
Perfluoroalkyl carboxylic acids (PFCA)												
PFBA	212.98	Wide	168.90	Widest	166	10	4	3.3	6	Negative		
PFBA	212.98	Wide	212.98	Widest	166	0	4	3.3	6	Negative		
PFPeA	262.97	Wide	219.04	Widest	166	9	4	6.9	1.5	Negative		
PFPeA	262.97	Wide	262.97	Widest	166	0	4	6.9	1.5	Negative		
PFHxA	312.97	Wide	118.90	Widest	166	22	4	8.44	1.5	Negative		
PFHxA	312.97	Wide	268.90	Widest	166	10	4	8.44	1.5	Negative		
PFHpA	362.97	Wide	318.80	Widest	166	10	4	9.5	1.5	Negative		
PFHpA	362.97	Wide	168.90	Widest	166	18	4	9.5	1.5	Negative		
PFOA	412.96	Wide	368.80	Widest	166	10	4	10.39	1.5	Negative		
PFOA	412.96	Wide	168.90	Widest	166	18	4	10.39	1.5	Negative		
PFNA	462.96	Wide	419.00	Widest	166	10	4	11.18	1.5	Negative		
PFNA	462.96	Wide	218.90	Widest	166	14	4	11.18	1.5	Negative		
PFDA	512.96	Wide	469.00	Widest	166	10	4	11.9	1.5	Negative		
PFDA	512.96	Wide	268.80	Widest	166	18	4	11.9	1.5	Negative		
PFUnDA	562.95	Wide	518.90	Widest	166	10	4	12.61	1.5	Negative		
PFUnDA	562.95	Wide	268.80	Widest	166	18	4	12.61	1.5	Negative		
PFDoDA	612.95	Wide	568.80	Widest	166	10	4	13.3	1.5	Negative		
PFDoDA	612.95	Wide	318.80	Widest	166	22	4	13.3	1.5	Negative		
PFTrDA	662.95	Wide	618.90	Widest	166	10	4	13.96	1.5	Negative		
PFTrDA	662.95	Wide	168.90	Widest	166	30	4	13.96	1.5	Negative		
PFTeDA	712.94	Wide	668.80	Widest	166	10	4	14.49	1.5	Negative		
PFTeDA	712.94	Wide	168.80	Widest	166	30	4	14.49	1.5	Negative		
PFHxDA	812.94	Wide	768.90	Widest	166	14	4	14.75	1.5	Negative		
PFHxDA	812.94	Wide	218.90	Widest	166	30	4	14.75	1.5	Negative		
PFODA	912.93	Wide	868.90	Widest	166	14	4	15.03	1.5	Negative		
PFODA	912.93	Wide	218.90	Widest	166	34	4	15.03	1.5	Negative		
Perfluoroalkyl	sulfonic acid	is (PFSA)										

 Table S2- DMRM transition list. Quant ions are listed first and bolded.

PFBS	298.94	Wide	80.00	Widest	166	38	4	8.29	1.5	Negative
PFBS	298.94	Wide	99.00	Widest	166	30	4	8.29	1.5	Negative
PFPeS	348.94	Wide	80.00	Widest	166	46	4	9.45	1.5	Negative
PFPeS	348.94	Wide	99.00	Widest	166	42	4	9.45	1.5	Negative
PFHxS	398.93	Wide	79.90	Widest	166	40	4	10.18	1.5	Negative
PFHxS	398.93	Wide	98.80	Widest	166	38	4	10.18	1.5	Negative
PFHpS	448.93	Wide	79.90	Widest	166	46	4	11.12	1.5	Negative
PFHpS	448.93	Wide	98.80	Widest	166	46	4	11.12	1.5	Negative
PFOS	498.93	Wide	80.00	Widest	166	58	4	11.59	1.5	Negative
PFOS	498.93	Wide	99.00	Widest	166	42	4	11.59	1.5	Negative
PFNS	548.92	Wide	80.00	Widest	166	50	4	12.45	1.5	Negative
PFNS	548.92	Wide	99.00	Widest	166	54	4	12.45	1.5	Negative
PFDS	598.92	Wide	80.00	Widest	166	58	4	13.05	1.5	Negative
PFDS	598.92	Wide	99.00	Widest	166	54	4	13.05	1.5	Negative
Perfluoroether o (PFECA)	carboxylic ac	ids								
PFMOAA	178.97	Wide	84.90	Widest	166	0	4	1.94	3	Negative
PMPA	228.97	Wide	184.90	Widest	166	10	4	4.8	4	Negative
PMPA	228.97	Wide	84.90	Widest	166	26	4	4.8	4	Negative
PEPA	234.98	Wide	135.00	Widest	166	18	4	7.2	4	Negative
PEPA	234.98	Wide	119.00	Widest	166	10	4	7.2	4	Negative
PFO2HxA	244.97	Wide	85.10	Widest	166	10	4	6.3	3	Negative
PFO2HxA	244.97	Wide	151.00	Widest	166	5	4	6.3	3	Negative
Gen-X	284.59	Wide	168.90	Widest	166	10	4	8.76	1.5	Negative
Gen-X	284.59	Wide	184.80	Widest	166	14	4	8.76	1.5	Negative
PFO3OA	310.96	Wide	85.00	Widest	166	10	4	8.6	1.5	Negative
PFO3OA	310.96	Wide	310.96	Widest	166	0	4	8.6	1.5	Negative
ADONA	376.96	Wide	250.90	Widest	166	10	4	9.86	1.5	Negative
ADONA	376.96	Wide	85.00	Widest	166	30	4	9.86	1.5	Negative
PFO4DA	376.95	Wide	85.00	Widest	166	10	4	10	1.5	Negative
PFO4DA	376.95	Wide	376.95	Widest	166	0	4	10	1.5	Negative
PFO5DoDA	442.94	Unit	85.00	Widest	166	18	4	10.9	2	Negative
PFO5DoDA	442.94	Unit	442.94	Widest	166	0	4	10.9	2	Negative
Hydro-EVE	426.96	Wide	283.00	Widest	166	10	4	10.12	1.5	Negative

Hydro-EVE	426.96	Wide	213.00	Widest	166	30	4	10.12	1.5	Negative	
Perfluoroether sulfonic acids (PFESA)											
NBP 1	442.92	Wide	262.90	Widest	166	18	4	10.87	1.5	Negative	
NBP 1	442.92	Wide	147.00	Widest	166	30	4	10.87	1.5	Negative	
NBP 2	462.93	Wide	263.00	Widest	166	26	4	10.82	1.5	Negative	
NBP 2	462.93	Wide	213.00	Widest	166	38	4	10.82	1.5	Negative	
NBP 4	440.93	Wide	240.80	Widest	166	26	4	7.4	1.5	Negative	
NBP 4	440.93	Wide	196.90	Widest	166	34	4	7.4	1.5	Negative	
NVHOS	296.94	Wide	116.90	Widest	166	30	4	7.4	1.5	Negative	
NVHOS	196.94	Wide	80.00	Widest	166	42	4	7.4	1.5	Negative	
F53 Major	530.89	Wide	350.90	Widest	166	30	4	12.2	1.5	Negative	
F53 Major	530.89	Wide	83.10	Widest	166	30	4	12.2	1.5	Negative	
F53 Minor	630.89	Wide	450.90	Widest	166	30	4	13.39	1.5	Negative	
F53 Minor	630.89	Wide	98.80	Widest	166	34	4	13.39	1.5	Negative	
Perfluoroalkyl sul	fonamides (PFSAm)									
FBSA	297.96	Wide	77.90	Widest	166	26	4	10.13	1.5	Negative	
FBSA	297.96	Wide	63.90	Widest	166	60	4	10.13	1.5	Negative	
FHxSA	397.95	Wide	77.90	Widest	166	30	4	12.09	1.5	Negative	
FHxSA	397.95	Wide	168.80	Widest	166	30	4	12.09	1.5	Negative	
FOSA	497.94	Wide	78.10	Widest	166	38	4	13.57	1.5	Negative	
FOSA	497.94	Wide	48.10	Widest	166	60	4	13.57	1.5	Negative	
MeFOSA	511.96	Wide	169.00	Widest	166	30	4	14.4	1.5	Negative	
MeFOSA	511.96	Wide	218.90	Widest	166	26	4	14.4	1.5	Negative	
NMeFOSAA	569.96	Wide	418.80	Widest	166	22	4	14.1	1.5	Negative	
NMeFOSAA	569.96	Wide	511.80	Widest	166	22	4	14.1	1.5	Negative	
NEtFOSAA	583.98	Wide	419.00	Widest	166	18	4	14.4	1.5	Negative	
NEtFOSAA	583.98	Wide	526.00	Widest	166	18	4	14.4	1.5	Negative	
Fluorotelomer sul	fonic acids	(FTS)									
4:2 FTS	326.97	Wide	307.00	Widest	166	18	4	7.95	1.5	Negative	
4:2 FTS	326.97	Wide	81.00	Widest	166	30	4	7.95	1.5	Negative	
6:2 FTS	426.97	Wide	407.00	Widest	166	26	4	9.86	1.5	Negative	
6:2 FTS	426.97	Wide	81.00	Widest	166	38	4	9.86	1.5	Negative	

8:2 FTS	526.96	Wide	506.90	Widest	166	30	4	11.35	1.5	Negative
8:2 FTS	526.96	Wide	81.10	Widest	166	34	4	11.35	1.5	Negative
10:2 FTS	626.95	Wide	606.90	Widest	166	34	4	12.71	1.5	Negative
10:2 FTS	626.95	Wide	81.10	Widest	166	46	4	12.71	1.5	Negative
Zwitterions										
N-AP-FHxSA	485.06	Wide	85.10	Widest	166	38	4	11.4	1.5	Positive
N-AP-FHxSA	485.06	Wide	58.10	Widest	166	60	4	11.4	1.5	Positive
N-TAmP-										
FHxSA	499.07	Wide	59.10	Widest	166	60	4	10.2	1.5	Positive
N-TAmP-										
FHxSA	499.07	Wide	60.10	Widest	166	38	4	10.2	1.5	Positive
N-CHAmP-										
6:2FOSA	571.10	Wide	58.10	Widest	166	54	4	10.34	1.5	Positive
N-CHAmP-										
6:2FOSA	571.10	Wide	104.00	Widest	166	34	4	10.34	1.5	Positive

One-Way ANOVA											
Compoun			Mean		Below	Summa	Adjusted P				
d	Figure	Comparison	Diff.	95.00% CI of diff.	threshold?	ry	Value				
	Fig. 1 &	MeOH No Heat vs. NH ₄ OH No		-0.7731 to -							
PFBA	S1A	Heat	-0.4237	0.07435	Yes	*	0.015				
	Fig. 1 &	MeOH No Heat vs. NH ₄ OH No		-0.5046 to -							
PFPeA	S1A	Heat	-0.3255	0.1463	Yes	***	0.0005				
	Fig. 1 &	MeOH No Heat vs. NH ₄ OH No		-0.4255 to -							
PFHxA	S1A	Heat	-0.2818	0.1380	Yes	***	0.0002				
	Fig. 1 &	MeOH No Heat vs. NH ₄ OH No		-0.4348 to -							
PFHpA	SIA	Heat	-0.2843	0.1338	Yes	***	0.0003				
	Fig. 1 &	MeOH No Heat vs. NH ₄ OH No		-0.4450 to -							
PFOA	S1A	Heat	-0.3056	0.1663	Yes	****	<0.0001				
	Fig. 1 &	MeOH No Heat vs. NH ₄ OH No		-0.4067 to -							
PFNA	S1A	Heat	-0.2627	0.1186	Yes	***	0.0004				
N-AP	Fig. 1 &	MeOH Heat vs. MeOH No		-0.5063 to							
(100)	S7A	Heat	-0.151	0.2043	No	ns	0.626				
N-AP	Fig. 1 &	MeOH Heat vs. MeOH No		-0.4175 to -							
(1k)	S7B	Heat	-0.328	0.2384	Yes	***	<.001				
N-AP	Fig. 1 &	MeOH Heat vs. MeOH No		-0.7957 to -							
(10k)	STC	Heat	-0.592	0.3884	Yes	****	<0.0001				

 Table S3. One-way ANOVE data for associated figures

Figure S1. Process efficiencies of PFCA compounds under heat, no-heat, methanol, and ammonium hydroxide conditions for three concentrations (**A**) 100 ng/L, (**B**) 1,000 ng/L and (**C**) 10,000 ng/L.

Figure S3. Process efficiencies of PFECA compounds under heat, no-heat, methanol, and ammonium hydroxide conditions for three concentrations (**A**) 100 ng/L, (**B**) 1,000 ng/L and (**C**) 10,000 ng/L.

Figure S4. Process efficiencies of PFESA compounds under heat, no-heat, methanol, and ammonium hydroxide conditions for three concentrations (**A**) 100 ng/L, (**B**) 1,000 ng/L and (**C**) 10,000 ng/L.

Figure S5. Process efficiencies of PFSAm compounds under heat, no-heat, methanol, and ammonium hydroxide conditions for three concentrations (**A**) 100 ng/L, (**B**) 1,000 ng/L and (**C**) 10,000 ng/L.

Figure S6. Process efficiencies of FTS compounds under heat, no-heat, methanol, and ammonium hydroxide conditions for three concentrations (**A**) 100 ng/L, (**B**) 1,000 ng/L and (**C**) 10,000 ng/L.

Figure S7. Process efficiencies of Zwitterionic compounds under heat, no-heat, methanol, and ammonium hydroxide conditions for three concentrations (**A**) 100 ng/L, (**B**) 1,000 ng/L and (**C**) 10,000 ng/L.

Figure S8. Process efficiencies of reconstituting extracts with 1 mL of 50:50 methanol water or 500 μ L of 100% methanol and then 500 μ L of 100% water for (**A**) PFCA & (**B**) PFSA. All replicates were run in MeOH with no heat applied.

Figure S9. Process efficiencies of reconstituting extracts with 1 mL of 50:50 methanol water or 500 μ L of 100% methanol and then 500 μ L of 100% water for (**A**) PFECA and (**B**) PFESA. All replicates were run in MeOH with no heat applied.

Figure S10. Process efficiencies of reconstituting extracts with 1 mL of 50:50 methanol water or 500 μ L of 100% methanol and then 500 μ L of 100% water for (**A**) FTS, (**B**) PFSAm, & (**C**) Zwitterions. All replicates were run in MeOH with no heat applied.

