Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs

Xin Xu^{1,2,3}, Hongwei Pang^{4,5,6}, Chao Liu^{1,2,3}, Kangyi Wang^{1,2,3}, Gwendal Loisel^{4,5,6}, Lei Li^{1,2,3}, Sasho Gligorovski^{4,5,6}*, Xue Li^{1,2,3}*

¹Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China

²Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China

³Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China

⁴State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

⁵Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,

Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China

⁶Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou,

510640, China

* corresponding authors

Email: tamylee@jnu.edu.cn; gligorovski@gig.ac.cn

Submitted to Environmental Science: Processes & Impacts

Number of texts	3
Number of figures	7
Number of tables	6

Experimental Section

Table of contents

Text S1:	3
Text S2	
Text S3	4
Figure S1	5
Figure S2	6
Figure S3	7
Figure S4	9
Figure S5	
Figure S6	
Figure S7	
Table S1	
Table S2	
Table S3.	
Table S4	14
Table S5	
Table S6	

1 Text S1: Blank sample

For both real and simulated breath samples, the blank sample was prepared by filling zero air into a homemade 40-L Nalophan (Scentroid, Canada) bag (Figure S1). Before being delivered into the reaction chamber, the humidity of zero air was adjusted to the level as same as that in the breath (i.e., relative humidity (RH) 92%–94%) by using a humidifier (Figure S1). Then the zero air was pumped into the reaction chamber at a flow rate of 1.5 L min⁻¹ controlled by a sampling pump (FCG-5, YanCheng Galaxy Science & Technology LTD, China).

8

9 Text S2: Data analysis

MS Raw data were pretreated as reported before and ions with signal intensity $\geq 2.5 \times 10^5$ a.u. 10 were extracted for further analysis¹. For cluster analysis, those clusters were defined based on the 11 degree of similarity. In the study, hierarchical analysis in MATLAB (R2018b) was performed to 12 discover m/z values sharing the same intensity temporal profiles. The pdist function is used to 13 calculate the distance between every pair of objects (i.e., m/z values in our case) in a data set. For 14 15 a data set made up of m objects, there are $m^*(m-1)/2$ pairs in the data set. The result of this computation is commonly known as a distance or dissimilarity matrix. Once the proximity between 16 objects in the data set has been computed, it can determine how objects in the data set should be 17 18 grouped into clusters, using the linkage function. The linkage function takes the distance information generated by pdist and links pairs of objects that are close together into binary clusters 19 (clusters made up of two objects). The linkage function then links these newly formed clusters to 20 21 each other and to other objects to create bigger clusters until all the objects in the original data set 22 are linked together in a hierarchical tree. For data mining, t-test (GraphPad Prism 7) was performed

to identify the possible products from O_3 reaction with exhaled human breath containing VOCs. When the *p* value is < 0.0001, it is considered that there is a significant difference between the two groups of samples ². Therefore, *p* < 0.0001 was adopted in this study to determine the potential products resulting from O_3 reaction with breath VOCs. Finally, the element compositions of individual products were given using commercial software Xcalibur (Thermo Scientific, USA).

To identify and characterize the detected aromatic compounds we used the aromaticity equivalent (X_C) which is mathematical parameter calculated as follows ^{3–5}. Therefore, X_C of the organic compounds, which contain C, H, O, and N in their chemical structures, was calculated as follows:

31
$$X_{C} = \frac{2C + N - H - 2mO - 2nS}{DBE - mO - nS}$$
(Eq-S1)

32 where m and n represent the fraction of oxygen and sulfur atoms, involved in the π -bonds of a 33 molecular structure ³. In this study, m and n were set to 0.5, since the ESI- mode is most sensitive 34 to compounds that contain carboxylic functional groups ⁴. Threshold values of X_C were set as, 2.50 35 \leq X_C < 2.71, and X_C \geq 2.71, as criteria for the presence of aromatics or multi-core aromatic 36 compounds in the identified ions, respectively ^{5–7}.

37 Text S3: Calculation of normalized intensity of products.

In many recent studies, peak abundance comparisons in mass spectrometry have been used to show the relative importance of different types of compounds 5.8-10. However, the ionization efficiencies of different classes of compounds can vary widely ¹¹, so comparing peak abundances between different compounds is likely to produce uncertainty. Calculation of normalized intensity of product compounds formed during the gas-phase reaction of O₃ with VOCs from exhaled breath was performed by using 2-butanone as a reference compound ¹²:

$$C_i = \frac{Int_i}{Int_{BUT}} \times C_{BUT}$$
(Eq-S2)

45 where C_i is the mixing ratio (pptv or ppbv) of compound *i* detected during the experiments, Int_{BUT} 46 is the intensity of 2-butanone, Int_i is the intensity of product *i*, and C_{BUT} is the mixing ratio of 2-47 butanone, i.e., 2 ppbv.

The calculation of the normalized intensity indicated the occurrence of 17 positive ions and 15 negative ions at mixing ratio higher than 5 pptv, which were assigned to 24 compounds (Table S6). We emphasize the discussion on seven compounds with mixing ratio higher than 100 pptv which were observed in both cases i.e. products resulting from ozonolysis of human breath and from reaction of O₃ with standard compounds (Table S6). The two most prominent products produced by the reactions of O₃ with isoprene and α -terpinene were A₁₀ or B₁₀ (104–125 pptv) which formation is described below in the "reaction mechanism".

Figure S1. Experimental set-up for real-time monitoring of ozone (O_3) reaction with exhaled human breath.

Figure S2. Experimental set-up for real-time monitoring of O_3 reaction with standard compounds which are typical VOCs identified in human breath.

S6

Figure S3. Hierarchical cluster analysis of (a) 694 ions detected in the positive ion detection mode and (b) 102 ions detected in the negative ion detection mode. The normalized signal intensity in hierarchical cluster is presented by a color-coded scale, i.e., the signal intensity increases from dark blue (normalized value is 0) to wine red (normalized value is 1). It should be noted that the periodic fluctuations of signal intensities over time in Figure S3a Cluster 4 and Figure S3b are due to the MS/MS analyses performed for these ions at certain time periods.

60 **Figure S4.** Intensity-time profiles (solid lines) of ions detected in positive mode and time profile 61 (dash line) of O_3 mixing ratio for human breath samples (a) YZH-Pos, (b) CX-Pos and (c) LC-Pos, 62 relative abundance is defined as the intensity of each ion normalized to the highest intensity during 63 the full course of reaction.

66 **Figure S5.** Hierarchical cluster analysis of ions produced by the reaction of O_3 and standard 67 isoprene in (a) positive mode and (b) negative mode. The normalized signal intensity in 68 hierarchical cluster is presented by a color-coded scale, i.e., the signal intensity increases from 69 dark blue (normalized value is 0) to wine red (normalized value is 1).

Figure S6. Hierarchical cluster analysis of ions produced by the reaction of O_3 and standard α reprine in (a) positive mode and (b) negative mode. The normalized signal intensity in hierarchical cluster is presented by a color-coded scale, i.e., the signal intensity increases from dark blue (normalized value is 0) to wine red (normalized value is 1).

- 80 Table S1. Mixing ratios and RH values of simulated breath samples prepared using two individual
- 81 standard gases.

	Parameters	Samples	Value	
	RH	All simulated samples	92%–94%	
	Mixing ratio	Isoprene	730 pptv	
		α-terpinene	410 pptv	
82				
83				
84				
85				

Subject	Subject Mixing ratio (ppbv)					
Subject	Isoprene	a-Terpinene				
1	0.74	0.17				
2	1.16	0.17				
3	1.83	0.67				
4	0.67	0.73				
5	0.38	0.24				
6	0.40	0.66				
7	0.80	0.39				
8	0.42	0.29				
9	0.20	0.17				
AVE	0.73	0.39				

86 Table S2. The mixing ratios of isoprene and α-terpinene in 9 subjects breath samples.

87 aResults of subjects 5–9 are from other experiments.

88

89

90 Table S3. Number of ions detected by SESI-HRMS for four subjects.

Subject	Detection mode	No. of ions	No. of product ions [°]
YZH	Pos ^a	694	219
	Neg ^b	124	3
СХ	Pos	831	44
	Neg	112	16
LC	Pos	851	42
	Neg	131	24
XX	Pos	618	62
	Neg	102	37

91 ^aPos: position ion detection mode; ^bNeg: negative ion detection mode; ^cproduct ions: ions that

92 showed an increasing trend at O_3 exposure stage.

No.	Mode	DBE	m/z	Formula	No.	Mode	DBE	m/z	Formula
1	Positive	2	58.974	CHO ₂ N	2	Positive	1	59.036	C ₂ H ₅ ON
3	Positive	0.5	60.044	C ₂ H ₆ ON	4	Positive	0	61.053	C ₂ H ₇ ON
5	Positive	0	61.055	C ₂ H ₇ ON	6	Positive	0.5	88.075	C ₄ H ₁₀ ON
7	Positive	0.5	104.07	$C_4H_{10}O_2N$	8	Positive	0.5	105.065	$C_3H_9O_2N_2$
9	Positive	1.5	114.091	C ₆ H ₁₂ ON	10	Positive	1.5	114.092	C ₆ H ₁₂ ON
11	Positive	1.5	115.088	$C_5H_{11}ON_2$	12	Positive	4.5	115.094	$C_4H_{11}N_4$
13	Positive	0.5	116.095	$C_5H_{12}ON_2$	14	Positive	2	116.098	C ₅ H ₁₂ ON ₂
15	Positive	0.5	116.106	C ₆ H ₁₄ ON	16	Positive	1	118.086	$C_5H_{12}O_2N$
17	Positive	0.5	119.083	$C_4H_{11}O_2N_2$	18	Positive	0	120.088	$C_4H_{12}O_2N$
19	Positive	0	122.068	$C_{3}H_{10}O_{3}N_{2}$	20	Positive	1.5	128.106	C ₇ H ₁₄ ON
21	Positive	10	133.067	CH ₇ ON ₇	22	Positive	1	148.083	$C_5H_{12}O_3N$
23	Positive	12	207.029	$C_{13}H_5O_2N$	24	Positive	12	207.03	$C_{13}H_5O_2N$
25	Positive	12	207.031	$C_{13}H_5O_2N$	26	Positive	0	222.156	$C_9H_{22}O_4N$
27	Positive	11	223.063	$C_{14}H_9O_2N$	28	Positive	2.5	224.063	$C_4H_{10}O_6N$
29	Positive	6.5	224.066	$C_9H_{10}O_4N_3$	30	Positive	11	225.042	C ₁₃ H ₇ O ₃ N
31	Positive	7	225.06	$C_6H_7O_3N_7$	32	Positive	2.5	227.175	$C_{12}H_{23}O_2N$
33	Positive	11	229.001	$C_{11}H_3O_5N$	34	Positive	3.5	252.195	C15H26O2
35	Positive	9.5	268.978	C ₇ HO ₈ N ₄	36	Positive	5.5	277.216	C ₁₈ H ₂₉ O ₂
37	Positive	12.5	282.049	$C_{14}H_8O_4N_3$	38	Positive	12.5	282.05	$C_{14}H_8O_4N_8$
39	Positive	8.5	283.029	$C_9H_7O_7N_4$	40	Positive	8.5	283.03	C ₉ H ₇ O ₇ N
41	Positive	7.5	297.082	$C_{11}H_{13}O_6N_4$	42	Positive	11.5	298.082	C ₁₅ H ₁₂ O ₄ N
43	Positive	15.5	298.085	$C_{20}H_{12}O_2N$	44	Positive	7.5	299.061	C ₁₀ H ₁₁ O ₇ N
45	Positive	11	299.078	$C_{16}H_{13}O_5N$	46	Positive	11	299.079	C ₁₆ H ₁₃ O ₅ I
47	Positive	15.5	300.064	$C_{19}H_{10}O_{3}N$	48	Positive	15.5	300.065	$C_{19}H_{10}O_{3}$
49	Positive	11	301.057	$C_{15}H_{11}O_6N$	50	Positive	11	301.058	C ₁₅ H ₁₁ O ₆]
51	Positive	19	341.017	$C_{17}H_{3}O_{4}N_{5}$	52	Positive	19	341.018	$C_{17}H_3O_4N_5$
53	Positive	19	342.997	C ₁₆ HO ₅ N ₅	54	Positive	19	342.998	C ₁₆ HO ₅ N
55	Positive	6.5	344.976	CHO ₁₂ N ₁₀	56	Positive	18	357.049	$C_{18}H_7O_4N_7$
57	Positive	18	359.027	C ₁₇ H ₅ O ₅ N ₅	58	Positive	18	359.028	C ₁₇ H ₅ O ₅ N
59	Positive	22	360.027	$C_{21}H_4O_3N_4$	60	Positive	22	360.028	$C_{21}H_4O_3N_5$
61	Positive	16	388.126	C ₂₀ H ₁₆ O ₃ N ₆	62	Positive	16	388.127	C ₂₀ H ₁₆ O ₂ N

94 **Table S4.** CHON compounds identified resulting from the reaction of O_3 and exhaled breath in 95 positive (cluster 3 in figure S3a) and negative mode (cluster 5 in figure S3b).

63	Positive	16	388.128	$C_{20}H_{16}O_3N_6$	64	Positive	16	389.111	C ₂₀ H ₁₅ O ₄ N ₅
65	Positive	16	389.112	$C_{20}H_{15}O_4N_5$	66	Positive	10.5	415.035	$C_{13}H_{11}O_{12}N_4$
67	Positive	10.5	415.036	$C_{13}H_{11}O_{12}N_4 \\$	68	Positive	10.5	415.037	$C_{13}H_{11}O_{12}N_4$
69	Positive	9.5	429.088	$C_{15}H_{17}O_{11}N_4$	70	Positive	19	430.086	$C_{18}H_{10}O_4N_{10}$
71	Positive	19	430.087	$C_{18}H_{10}O_4N_{10}\\$	72	Positive	19	430.088	$C_{18}H_{10}O_4N_{10}$
73	Positive	19	430.089	$C_{18}H_{10}O_4N_{10}\\$	74	Positive	9.5	431.067	$C_{14}H_{15}O_{12}N_4$
75	Positive	9.5	431.068	$C_{14}H_{15}O_{12}N_4 \\$	76	Positive	9.5	431.069	$C_{14}H_{15}O_{12}N_4$
77	Positive	18	431.084	$C_{21}H_{13}O_6N_5$	78	Positive	18	431.085	$C_{21}H_{13}O_6N_5$
79	Positive	18	431.086	$C_{21}H_{13}O_6N_5$	80	Positive	18	431.088	$C_{21}H_{13}O_6N_5$
81	Positive	13.5	432.067	$C_{18}H_{14}O_{10}N_3$	82	Positive	13.5	432.068	$C_{18}H_{14}O_{10}N_3$
83	Positive	13.5	432.069	$C_{18}H_{14}O_{10}N_3$	84	Positive	18	433.064	$C_{20}H_{11}O_7N_5$
85	Positive	18	433.065	$C_{20}H_{11}O_7N_5$	86	Positive	18	433.066	$C_{20}H_{11}O_7N_5$
87	Positive	3.5	448.115	$C_{11}H_{22}O_{14}N_5$	88	Positive	3.5	448.116	$C_{11}H_{22}O_{14}N_5$
89	Positive	3.5	448.117	$C_{11}H_{22}O_{14}N_5$	90	Positive	1.5	448.349	$C_{21}H_{46}O_5N_5$
91	Positive	1.5	448.35	$C_{21}H_{46}O_5N_5$	92	Positive	1.5	448.351	$C_{21}H_{46}O_5N_5$
93	Positive	1.5	448.352	$C_{21}H_{46}O_5N_5$	94	Positive	8	449.112	$C_{13}H_{19}O_{11}N_7$
95	Positive	8	449.113	$C_{13}H_{19}O_{11}N_7$	96	Positive	8	449.114	$C_{13}H_{19}O_{11}N_7$
97	Positive	8	449.118	$C_{13}H_{19}O_{11}N_7$	98	Positive	8	449.119	$C_{13}H_{19}O_{11}N_7$
99	Positive	8	449.121	$C_{13}H_{19}O_{11}N_7$	100	Positive	8	449.122	$C_{13}H_{19}O_{11}N_7$
101	Positive	12	450.112	$C_{17}H_{18}O_9N_6$	102	Positive	12	450.113	$C_{17}H_{18}O_9N_6$
103	Positive	12	450.114	$C_{17}H_{18}O_9N_6$	104	Positive	12	450.115	$C_{17}H_{18}O_9N_6$
105	Positive	7.5	462.146	$C_{16}H_{24}O_{11}N_5$	106	Positive	11.5	463.144	$C_{20}H_{23}O_9N_4$
107	Positive	11.5	463.145	$C_{20}H_{23}O_9N_4$	108	Positive	11	463.146	$C_{20}H_{23}O_9N_4$
109	Positive	11	464.142	$C_{21}H_{24}O_{10}N_2$	110	Positive	10.5	464.15	$C_{21}H_{24}O_{10}N_2$
111	Positive	11	464.151	$C_{21}H_{24}O_{10}N_2$	112	Positive	2.5	465.14	$C_{11}H_{25}O_{14}N_6$
113	Positive	2.5	465.141	$C_{11}H_{25}O_{14}N_6$	114	Positive	2.5	465.143	$C_{11}H_{25}O_{14}N_6$
115	Positive	2.5	465.144	$C_{11}H_{25}O_{14}N_6$	116	Positive	2.5	465.146	$C_{11}H_{25}O_{14}N_6$
117	Positive	2.5	465.147	$C_{11}H_{25}O_{14}N_6$	118	Positive	2.5	465.149	$C_{11}H_{25}O_{14}N_6$
119	Positive	2.5	465.15	$C_{11}H_{25}O_{14}N_6$	120	Positive	19.5	466.138	$C_{27}H_{20}O_5N_3$
121	Positive	19.5	466.14	$C_{27}H_{20}O_5N_3$	122	Positive	19.5	466.141	$C_{27}H_{20}O_5N_3$
123	Positive	19.5	466.144	$C_{27}H_{20}O_5N_3$	124	Positive	15	466.146	$C_{23}H_{22}O_7N_4$
125	Positive	15	466.147	$C_{23}H_{22}O_7N_4$	126	Positive	15	466.148	$C_{23}H_{22}O_7N_4$
127	Positive	15	466.149	$C_{23}H_{22}O_7N_4$	128	Positive	11	486.258	$C_{24}H_{34}O_5N_6$
129	Positive	11	486.259	$C_{24}H_{34}O_5N_6$	130	Positive	20	489.054	$C_{22}H_{11}O_9N_5$
131	Positive	20	489.055	$C_{22}H_{11}O_9N_5$	132	Positive	20	489.056	$C_{22}H_{11}O_9N_5$
133	Negative	5.5	138.019	$C_6H_4O_3N$	134	Negative	6.5	149.045	C ₆ H ₅ ON ₄
135	Negative	3	224.027	$C_5H_8O_8N_2$	136	Negative	7.5	225.025	$C_7H_5O_5N_4$
137	Negative	5.5	250.144	$C_{14}H_{20}O_3N$	138	Negative	13.5	297.047	$\mathrm{C_{11}H_5O_3N_8}$
139	Negative	13.5	299.026	$C_{10}H_3O_4N_8$					

97 Table S5. CHO compounds identified resulting from the reaction of O_3 and breath in positive

No.	Mode	DBE	m/z	Formula	No.	Mode	DBE	m/z	Formula
1	Positive	0.5	59.049	C ₃ H ₇ O	2	Positive	0.5	59.05	C ₃ H ₇ O
3	Positive	0.5	59.053	C ₃ H ₇ O	4	Positive	0.5	59.054	C_3H_7O
5	Positive	0.5	61.028	$C_2H_5O_2$	6	Positive	1.5	71.049	C_4H_7O
7	Positive	1.5	73.028	$C_3H_5O_2$	8	Positive	0.5	73.064	C ₄ H ₉ O
9	Positive	0.5	75.044	$C_3H_7O_2$	10	Positive	2.5	83.049	C ₅ H ₇ O
11	Positive	2.5	85.028	$C_4H_5O_2$	12	Positive	1.5	85.064	C ₅ H ₉ O
13	Positive	1.5	87.044	$C_4H_7O_2$	14	Positive	0.5	87.08	$C_5H_{11}O$
15	Positive	0.5	89.059	$C_4H_9O_2$	16	Positive	3.5	95.049	C ₆ H ₇ O
17	Positive	2.5	97.064	C ₆ H ₉ O	18	Positive	2.5	99.043	$C_5H_7O_2$
19	Positive	2.5	99.044	$C_5H_7O_2$	20	Positive	1.5	99.08	$C_6H_{11}O$
21	Positive	1.5	101.059	$C_5H_9O_2$	22	Positive	5.5	105.036	C ₇ H ₅ O
23	Positive	4.5	107.049	C ₇ H ₇ O	24	Positive	3.5	109.064	C ₇ H ₉ O
25	Positive	2.5	111.08	$C_7H_{11}O$	26	Positive	2.5	113.059	$C_6H_9O_2$
27	Positive	1.5	113.096	$C_7H_{13}O$	28	Positive	1.5	115.075	$C_6H_{11}O_2$
29	Positive	0.5	115.111	$C_7H_{15}O$	30	Positive	0.5	117.09	$C_6H_{13}O_2$
31	Positive	4.5	121.064	C ₈ H ₉ O	32	Positive	4.5	123.043	$C_7H_7O_2$
33	Positive	3.5	123.079	$C_8H_{11}O$	34	Positive	3.5	123.08	$C_8H_{11}O$
35	Positive	3.5	125.059	$C_7H_9O_2$	36	Positive	2.5	125.096	$C_8H_{13}O$
37	Positive	2.5	127.075	$C_7H_{11}O_2$	38	Positive	0.5	127.111	$C_8H_{15}O$
39	Positive	1.5	129.09	$C_7H_{13}O_2$	40	Positive	5.5	133.064	C ₉ H ₉ O
41	Positive	4.5	137.059	$C_8H_9O_2$	42	Positive	3.5	137.096	$C_9H_{13}O$
43	Positive	3.5	139.075	$C_8H_{11}O_2$	44	Positive	2.5	141.09	$C_8H_{13}O_2$
45	Positive	1.5	141.127	$C_9H_{17}O$	46	Positive	1.5	143.106	$C_8H_{15}O_2$
47	Positive	0.5	145.122	$C_8H_{17}O_2$	48	Positive	1.5	147.064	$C_6H_{11}O_4$
49	Positive	5.5	147.08	$C_{10}H_{11}O$	50	Positive	1.5	149.044	$C_5H_9O_5$
51	Positive	4.5	149.096	$C_{10}H_{13}O$	52	Positive	3.5	151.111	$C_{10}H_{15}O$
53	Positive	3.5	153.09	$C_9H_{13}O_2$	54	Positive	2.5	153.127	$C_{10}H_{17}O$
55	Positive	2.5	155.106	$C_9H_{15}O_2$	56	Positive	1.5	157.122	$C_9H_{17}O_2$
57	Positive	6.5	163.038	$C_9H_7O_3$	58	Positive	4.5	163.111	$C_{11}H_{15}O$
59	Positive	4.5	165.09	$C_{10}H_{13}O_2$	60	Positive	0.5	167.055	$\mathrm{C}_5\mathrm{H}_{11}\mathrm{O}_6$
61	Positive	3.5	167.106	$C_{10}H_{15}O_2$	62	Positive	0.5	169.034	$C_4H_9O_7$
63	Positive	2.5	169.122	$C_{10}H_{17}O_2$	64	Positive	3.5	193.158	$\mathrm{C}_{13}\mathrm{H}_{21}\mathrm{O}$
65	Positive	3.5	207.174	$C_{14}H_{23}O$	66	Positive	4.5	219.174	C ₁₅ H ₂₃ O

98 (cluster 3 in figure S3a) and negative mode (cluster 5 in figure S3b).

67	Positive	4.5	221.153	$C_{14}H_{21}O_2$	68	Positive	3.5	221.189	C ₁₅ H ₂₅ O
69	Positive	4.5	235.169	$C_{15}H_{23}O_2$	70	Positive	3.5	237.184	$\mathrm{C_{15}H_{25}O_2}$
71	Positive	3.5	281.049	$C_9H_{13}O_{10}$	72	Positive	3.5	281.05	$C_9H_{13}O_{10}$
73	Positive	3.5	361.024	$C_9H_{13}O_{15}$	74	Positive	3.5	361.025	$C_9H_{13}O_{15}$
75	Positive	3.5	361.026	$C_9H_{13}O_{15}$	76	Positive	5.5	447.345	$\mathrm{C}_{28}\mathrm{H}_{47}\mathrm{O}_{4}$
77	Positive	5.5	447.346	$C_{28}H_{47}O_4$	78	Positive	1	486.267	$C_{21}H_{42}O_{12}$
79	Negative	1.5	59.013	$C_2H_3O_2$	80	Negative	2.5	69.034	C_4H_5O
81	Negative	2.5	71.013	$C_3H_3O_2$	82	Negative	1.5	71.05	C_4H_7O
83	Negative	2.5	72.993	C_2HO_3	84	Negative	2.5	72.993	C_2HO_3
85	Negative	1.5	73.029	$C_3H_5O_2$	86	Negative	1.5	75.008	$C_2H_3O_3$
87	Negative	3.5	81.034	C_5H_5O	88	Negative	2.5	83.05	C_5H_7O
89	Negative	2.5	85.029	$C_4H_5O_2$	90	Negative	2.5	87.008	$C_3H_3O_3$
91	Negative	1.5	87.045	$C_4H_7O_2$	92	Negative	2.5	99.045	$C_5H_7O_2$
93	Negative	2.5	101.024	$C_4H_5O_3$	94	Negative	1.5	103.04	$C_4H_7O_3$
95	Negative	4.5	109.029	$C_6H_5O_2$	96	Negative	3.5	113.024	$C_5H_5O_3$
97	Negative	2.5	115.04	$C_5H_7O_3$	98	Negative	1.5	117.055	$C_5H_9O_3$
99	Negative	4.5	125.024	$C_6H_5O_3$	100	Negative	3.5	127.04	$C_6H_7O_3$
101	Negative	2.5	129.055	$C_6H_9O_3$	102	Negative	2.5	143.071	$\mathrm{C_7H_{11}O_3}$
103	Negative	4.5	151.076	$C_9H_{11}O_2$	104	Negative	3.5	155.071	$\mathrm{C_8H_{11}O_3}$
105	Negative	2.5	157.086	$C_8H_{13}O_3$	106	Negative	2.5	157.087	$C_8H_{13}O_3$
107	Negative	1.5	159.102	$C_8H_{15}O_3$	108	Negative	4.5	167.071	$C_9H_{11}O_3$
109	Negative	3.5	169.087	$C_9H_{13}O_3$	110	Negative	2.5	171.102	$C_9H_{15}O_3$
111	Negative	5.5	179.071	$C_{10}H_{11}O_3$	112	Negative	2.5	185.082	$C_8H_{13}O_3$
113	Negative	8.5	201.055	$C_{12}H_9O_3$	114	Negative	5	236.141	$C_{14}H_{20}O_{3}$

No.	STD	Compound	formula	Ion mode	Elemental composition	m/z	∆mmu	Mixing ratio (pptv)ª
1	Isoprene	A10	$C_5H_8O_2$	$[M+H]^+$	$C_5H_9O_2$	101.059	-0.036	121
2		Product 1	$C_3H_2O_3$	[M-H] ⁻	C ₃ HO ₃	84.990	-2.427	1479
3		3-Methylfuran	C ₅ H ₆ O	$[M+H]^+$	C ₅ H ₇ O	83.049	-0.061	26
4		A10	$C_5H_8O_2$	[M+H] ⁺ (¹³ C)	C4 ¹³ CH9O2	102.063	-0.041	6
5		Product 2	$C_9H_{14}O_2$	$[M+H]^{+}$	$C_9H_{15}O_2$	155.106	-0.056	8
				$[M+H-H_2O]^+$	C ₉ H ₁₃ O	137.096	0.028	12
6		Product 3	$C_{10}H_{14}O_2$	$[M+H]^+$	$C_{10}H_{15}O_2$	167.106	0.024	11
7		Product 4	C ₁₅ H ₂₃ O	$[M+H]^+$	C ₁₅ H ₂₄ O	220.182	-0.097	40
				[M+H] ⁺ (¹³ C)	C ₁₄ ¹³ CH ₂₄ O	221.185	-0.072	6
8		Product 5	$C_2H_4O_3$	[M-H] ⁻	$C_2H_3O_3$	75.008	0.013	77
9		Product 6	$C_4H_2O_4$	$[M-H]^-$	C ₄ HO ₄	112.985	-2.412	41

100 **Table S6.** Compounds identified resulting from the reaction of O_3 and individual gas standards.

10		Product 7	$C_5H_8O_3$	$[M-H]^-$	$C_5H_7O_3$	115.040	-0.007	9
11		Product 8	$C_{6}H_{10}O_{3}$	$[M-H]^{-}$	$C_6H_9O_3$	129.055	0.053	34
12		Product 9	$C_2H_2O_6N_3$	$[M-H]^{-}$	C ₂ HO ₆ N ₃	162.982	-4.643	41
13	α-Terpinene	B10	$C_5H_8O_2$	$[M+H]^+$	$C_5H_9O_2$	101.059	-0.026	124
14		Product 10	CH_2O_3	$[M-H]^{-}$	CHO ₃	60.993	0.023	543
15		Product 11	CH ₃ O ₄	$[M-H]^{-}$	CH ₂ O ₄	77.991	-4.476	1206
16		Product 12	$\rm CH_2O_4$	$[M-H]^-$	CHO ₄	76.988	0.038	2178
17		Product 13	CH ₃ O ₃	$[M-H]^-$	CH ₂ O ₃	61.996	-4.722	709
				$[M+H-H_2O]^+$	C ₅ H ₇ O	83.049	-0.061	27
18		Product 14	$C_7H_8O_2$	$[M+H]^+$	$C_7H_9O_2$	125.059	0.054	7
19		Product 15	$C_{10}H_{16}O_3$	$[M+H-H_2O]^+$	$C_{10}H_{15}O_2$	167.106	0.034	22
20		Product 16	C ₁₅ H ₂₃ O	$[M+H]^+$	C ₁₅ H ₂₄ O	220.182	-0.087	38
				[M+H] ⁺ (¹³ C)	C ₁₄ ¹³ CH ₂₄ O	221.185	-0.072	6

21	Product 17	CHO ₃	$[M-H]^-$	CO ₃	59.985	0.008	19
			[M-H] ⁻ (¹³ C)	¹³ CO ₃	60.988	0.133	14
22	Product 18	$\rm H_2O_4N$	[M–H] [_]	HO ₄ N	78.992	1.174	36
 23	Product 19	$C_{16}H_{32}O_2$	[M-H] ⁻	$C_{16}H_{31}O_2$	255.232	-0.124	13

^aThe mixing ratio of each product compound was calculated as follows: $C_{i, \text{ breath}} - C_{i, \text{ blank}}$, where $C_{i, \text{ breath}}$ is the mixing ratio of compound *i* in breath and $C_{i, \text{ blank}}$ is the mixing ratio of compound *i* in the blank sample

103 References

- J. Zeng, M. Mekic, X. Xu, G. Loisel, Z. Zhou, S. Gligorovski and X. Li, A novel insight into
 the ozone-skin lipid oxidation products observed by secondary electrospray ionization high resolution mass spectrometry, *Environ. Sci. Technol.*, 2020, 54, 13478–13487.
- 107 2. T. K. Kim, T test as a parametric statistic, *Korean J. Anesthesiol.*, 2015, **68**, 540–546.
- M. M. Yassine, M. Harir, E. Dabek-Zlotorzynska and P. Schmitt-Kopplin, Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach, *Rapid Commun. Mass Spectrom.*, 2014, 28, 2445–2454.
- 112 4. I. Kourtchev, R. H. M. Godoi, S. Connors, J. G. Levine, A. T. Archibald, A. F. L. Godoi, S.
- 113 L. Paralovo, C. G. G. Barbosa, R. A. F. Souza, A. O. Manzi, R. Seco, S. Sjostedt, J. H. Park,
- 114 A. Guenther, S. Kim, J. Smith, S. T. Martin and M. Kalberer, Molecular composition of
- organic aerosols in central amazonia: an ultra-high-resolution mass spectrometry study, *Atmos. Chem. Phys.*, 2016, 16, 11899–11913.
- 117 5. X. Wang, N. Hayeck, M. Brüggemann, L. Yao, H. Chen, C. Zhang, C. Emmelin, J. Chen, C.
- 118 George and L. Wang, Chemical characteristics of organic aerosols in Shanghai: a Study by
- 119 ultrahigh-performance liquid chromatography coupled with orbitrap mass spectrometry, J.
- 120 Geophys. Res. Atmos., 2017, **122**, 11,703-11,722.
- 121 6. M. Mekic, J. Zeng, B. Jiang, X. Li, Y. G. Lazarou, M. Brigante, H. Herrmann and S.
- 122 Gligorovski, Formation of toxic unsaturated multifunctional and organosulfur compounds
- from the photosensitized processing of fluorene and DMSO at the air-water interface, J.
- 124 *Geophys. Res. Atmos.*, 2020, **125**, e2019JD031839.

- Y. Wang, M. Mekic, P. Li, H. Deng, S. Liu, B. Jiang, B. Jin, D. Vione and S. Gligorovski,
 Ionic strength effect triggers brown carbon formation through heterogeneous ozone
 processing of ortho-vanillin, *Environ. Sci. Technol.*, 2021, 55, 4553–4564.
- H. J. Lee, P. K. Aiona, A. Laskin, J. Laskin and S. A. Nizkorodov, Effect of solar radiation
 on the optical properties and molecular composition of laboratory proxies of atmospheric
 brown carbon, *Environ. Sci. Technol.*, 2014, 48, 10217–10226.
- D. E. Romonosky, Y. Li, M. Shiraiwa, A. Laskin, J. Laskin and S. A. Nizkorodov, Aqueous
 photochemistry of secondary organic aerosol of α-pinene and α-humulene oxidized with
 ozone, hydroxyl radical, and nitrate radical, *J. Phys. Chem. A*, 2017, **121**, 1298–1309.
- 134 10. J. Song, M. Li, B. Jiang, S. Wei, X. Fan and P. Peng, Molecular characterization of water-
- 135 soluble humic like substances in smoke particles emitted from combustion of eiomass
- 136 materials and coal using ultrahigh-resolution electrospray ionization fourier transform ion
- 137 cyclotron resonance mass spectrometry, *Environ. Sci. Technol.*, 2018, **52**, 2575–2585.
- 138 11. R. H. Perry, R. G. Cooks and R. J. Noll, Orbitrap mass spectrometry: instrumentation, ion
 motion and applications, *Mass Spectrom. Rev.*, 2008, 27, 661–699.
- 140 12. B. R. G. Mabato, Y. Lyu, Y. Ji, D. D. Huang, X. Li, T. Nah, C. H. Lam and C. K. Chan,
- 141 Aqueous SOA formation from the photo-oxidation of vanillin: direct photosensitized
- 142 reactions and nitrate-mediated reactions, *Atmos. Chem. Phys. Discuss.*, 2021, **2021**, 1–35.