Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2022

## Supporting Information for: Submersible Probe with In-line Calibration and Symmetrical Reference Element for Continuous Direct Nitrate Concentration Measurements

Tara Forrest a, Thomas Cherubini a, Stéphane Jeanneret a, Elena Zdrachek a, Polyxeni Damala a, Eric Bakker a

<sup>a</sup> Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland



Figure S1 : Scheme of main board controlling the probe. The Master (user) controls the probe and sets up the experiment that is run by the instrument. Through commands the instrument activates pump and executes different operations



Figure S2: A) Response of nitrate-selective electrode in 1 mM NaNO<sub>3</sub> subjected to different light intensities. The signal was fist measured in full darkness (no light) and then LED lights were turned on at different intensities: 563 LM (low) – 1126 LM (medium) – 1690 LM (high). B) Response of nitrate-selective electrode in 1 mM NaNO<sub>3</sub> while varying the pH. 1 M H<sub>2</sub>SO<sub>4</sub> was first spiked into the solution to reach an acidic pH and then 0.1 M NaOH was gradually added to reach a basic pH.



Figure S3 : Response of nitrate-selective electrode in 0.1 M NaNO<sub>3</sub> for 1h followed by immersion in 0.1 M NaCl for 6h. The electrodes were then again immersed in 0.1 M NaNO<sub>3</sub> to check the signal recovery. No water layer formation could be observed during the testing period.



Figure S4 : Potentiometric response of electrode for several anions. The selectivity experiment was performed according to the MSSM, where calibrations were performed sequentially according to the lipophilicity of the anions. From top to bottom, potentiometric response towards: Na<sub>2</sub>SO<sub>4</sub> (blue), NaCl (cyan), NaNO<sub>3</sub> (red), NaSCN (pink) and NaClO<sub>4</sub> (purple).

| Table S1 : Calculated selectivity coefficients from Figure S4. |                   |                                   |                                |  |  |  |  |
|----------------------------------------------------------------|-------------------|-----------------------------------|--------------------------------|--|--|--|--|
| Primary Ion                                                    | Interfering Ion   | logK <sub>ij</sub> <sup>Pot</sup> | K <sub>ij</sub> <sup>Pot</sup> |  |  |  |  |
| NO <sub>3</sub> -                                              | SO4 <sup>2-</sup> | -8.38                             | 4.13.10-9                      |  |  |  |  |
|                                                                | Cl-               | -2.48                             | 3.27.10-3                      |  |  |  |  |
|                                                                | SCN-              | 1.94                              | 8.68·10 <sup>1</sup>           |  |  |  |  |
|                                                                | ClO4-             | 3.07                              | $1.17 \cdot 10^{3}$            |  |  |  |  |



Figure S6 : Preprogrammable calibration routine. All timed events (t1 – t9) can be determined individually to customise the protocol to the adequate length and their description can be found in Table S5

Stabilization calibrant stabcalib Measure calibrant meascalib

Stabilizat

I then measure measrecov

time

recovtimeout

| Table S2 : Concentrations of all major ions in Rhône River sample with determination method |                                |                       |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------|-----------------------|--|--|--|--|--|
| Ion                                                                                         | Method                         | Concentration [M]     |  |  |  |  |  |
| Cl-                                                                                         | Ion Chromatography             | 2.76.10-4             |  |  |  |  |  |
| NO <sub>3</sub> -                                                                           | Ion Chromatography             | 3.53.10-5             |  |  |  |  |  |
| SO42-                                                                                       | Ion Chromatography             | 4.76.10-4             |  |  |  |  |  |
| HCO <sub>3</sub> -                                                                          | Titration                      | 9.37.10-4             |  |  |  |  |  |
| Na <sup>+</sup>                                                                             | Atomic Emission Spectroscopy   | 2.86.10-4             |  |  |  |  |  |
| $K^+$                                                                                       | Atomic Emission Spectroscopy   | 6.18·10 <sup>-5</sup> |  |  |  |  |  |
| Ca <sup>2+</sup>                                                                            | Atomic Absorption Spectroscopy | 1.10.10-3             |  |  |  |  |  |
| $Mg^{2+}$                                                                                   | Atomic Absorption Spectroscopy | 2.34.10-4             |  |  |  |  |  |

 Table S3 : Nitrate potentiometric response in Rhône River water sample. Potential values for raw sample and spiked sample (calibrant) recorded during tank-based experiment versus symmetrical nitrate reference.

| Cycle                          | 1      | 2      | 3      | 4      | 5      | 6      | 7      | Average | StDev |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|---------|-------|
| Sample potential value [mV]    | 2.92   | 2.75   | 2.42   | 2.67   | 2.79   | 2.74   | 2.63   | 2.70    | 0.16  |
| Calibrant potential value [mV] | -37.70 | -34.07 | -34.26 | -34.26 | -34.42 | -34.51 | -34.80 | -34.30  | 0.35  |
| $\Delta EMF [mV]$              | 36.62  | 36.82  | 36.93  | 36.93  | 37.21  | 37.25  | 37.43  | 37.01   | 0.29  |

Table S4 : Nitrate potentiometric response in Rhône River water sample. Potential values for raw sample and spiked sample (calibrant) recorded during tank-based experiment versus

| Cycle                             | 1     | 2     | 3     | 4     | 5     | 6     | 7     | Average | StDev |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|---------|-------|
| Sample potential value [mV]       | 34.16 | 33.20 | 34.70 | 34.52 | 34.41 | 34.74 | 33.63 | 34.19   | 0.58  |
| Calibrant potential value [mV]    | -1.00 | -0.50 | 0.30  | 0.23  | -0.38 | -0.48 | -1.77 | -0.60   | 0.63  |
| $\Delta \text{ EMF } [\text{mV}]$ | 35.16 | 33.70 | 35.00 | 34.29 | 34.79 | 35.22 | 35.40 | 34.79   | 0.60  |

| Table S5 · Description | of timed a | vant during | calibration | routing | nrasantad in Fic | nura S6 |
|------------------------|------------|-------------|-------------|---------|------------------|---------|
| Tuble S5 . Description | oj umeu ev | veni auring | canoration  | rouine  | presentea în rig | gure SO |

| Timed event | Name                    | Function                                                                                                                                                                                                            |  |  |  |
|-------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| t1          | Stabilisation base      | Initial time at the beginning of the cycle set to leave time to the signal to stabilise                                                                                                                             |  |  |  |
| t2          | Measure base            | Measurement of the signal to have a potential value before the calibrant                                                                                                                                            |  |  |  |
| t3          | Pump calibrant          | Activation of calibrant pump. t3 will stop when t5 is over                                                                                                                                                          |  |  |  |
| t4          | Stabilisation calibrant | Time to have stabilisation of the calibrant signal                                                                                                                                                                  |  |  |  |
| t5          | Measure calibrant       | Measurement of the signal to have a potential value of the calibrant. This value will be stored internally during the cycle to calculate the analyte concentration of the sample. Pump is stopped at the end of t5. |  |  |  |
| t6          | Stabilisation recovery  | Gradual signal recovery. The sample slowly replaces the calibrant solution inside the sensing dome.                                                                                                                 |  |  |  |
| t7          | Recovery Timeout        | Correlates the current signal value with the one obtained in t2 to estimate if the                                                                                                                                  |  |  |  |
| t8          | Measure Recovery        | calibrant solution has been fully replaced                                                                                                                                                                          |  |  |  |
| t9          | Waiting time            | Records the measuring electrodes signal at fixed interval to have time based potential reading and concentration values.                                                                                            |  |  |  |

Table S6 : Concentrations of nitrate determined by ion chromatography (n=3)

| Time [min] | Concentration [M]            |
|------------|------------------------------|
| 50         | 4.093±0.023·10 <sup>-5</sup> |
| 1160       | 3.491±0.005·10 <sup>-5</sup> |
| 1400       | 3.583±0.004·10 <sup>-5</sup> |
| 1550       | 3.854±0.005·10 <sup>-5</sup> |
| 2690       | 3.846±0.004·10 <sup>-5</sup> |
| 4490       | 3.858±0.005·10 <sup>-5</sup> |



Figure S7 : Potentiometric response of same nitrate-selective electrode versus double-junction reference electrode before immersion in real sample (red trace) and after 75h immersion in real sample (blue trace). Error bars represent standard deviation (n=3).