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Geologic map of the study area 

Figure S1 (next page). The geologic map of a portion of the study area (adapted from 1) to 

highlight the location of the Norman Arsenic Test Hole2. Aquifer rock samples used for chemical 

and mineralogical analysis were from the Norman Arsenic Test Hole Core. 
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Methods for statistical evaluation of groundwater data 
 

Data as-received from the various databases was significantly reorganized to successfully 

perform analyses. Before doing any data processing, it is first necessary to determine the data 

types. Ellefsen, Smith, and Horton3, Engle and Blondes4, Fowler et al.5, Garrett6, Boogaart and 

Tolosana7, etc. have all stated that geochemical data is compositional, which [requires special 

types of processing. Garrett6 and van den Boogaart and Tolosana7 define compositional data as a 

set of positive numbers (components) that sum up to a constant (the total). Our data (expressed in 

mmol/kg) may not seem to meet this requirement, but by multiplying by the molar weight of the 

solute it can easily be converted to ppm units, which must sum to 106. The mmol/kg unit simply 

does not appear to have a fixed sum because it is a ratio between the solute and water 

components, but that does not affect its compositional nature. 

Once the nature of the data was addressed, we also had to determine what information to filter 

out for the actual clustering analysis. Since a main objective of the study required clustering by 

geochemistry, we only considered the pH (converted to H+ concentration in mmol/L), Cr(VI) 

(converted to mmol/kg), CO3
2- (mmol/L eq.), Ca2+, Mg2+, Cl-, and SO4

2- (all represented in 

mmol/kg). We removed the K+ and SiO2(aq) concentrations from consideration because 19.4% 

and 50.9% of the values were missing, respectively. Although multiple methods exist for filling 

in missing values, they could not be accurately applied to our data. One of the methods used by 

Cloutier et al.8 was to average values from surrounding wells to fill missing entries. Most of the 

wells in our dataset with missing sample values had less than 3 nearby usable wells, as seen 

below. Less than 3 averaged values would make the means inaccurate. Additionally, the rapid 

lateral changes in lithology within the Garber-Wellington, documented in Ben Abbott’s thesis 

work9, would make averaging nearby well values potentially misleading (Figure S2). 
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Figure S2. Spatial locations (map view) of data missing K+ and SiO2 (aq) values. We determined 

that nearby values were too sparse to consider adding predicted/estimated values; therefore these 

analytes were not included in the study. 

Another common method fills missing at random (MAR) values based on the underlying 

distribution inferred from the available data, which can take many different forms7. With so 

much of the SiO2 (aq) and K+ data missing however, any natural partitions in the data could be 

easily obscured by whatever distribution model we used to calculate said values and limit the 

usefulness of the clustering. 

A final method of filling in MAR values used by Cloutier et al.8 was electro-neutrality; they 

calculated the missing value in the sample such that all the ions in the sample would be charge- 

balanced. We could not use electroneutrality because the dataset did not include all the ions 

present in the water samples. Out of 281 samples with both K+ and SiO2 (aq) concentrations, only 

7 had an electro-neutrality within 10% of neutral, the cutoff point which Cloutier et al.8 used to 

remove erroneous measurements. Because of the compositional nature of the data, however, 
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missing ions do not affect the analysis if the appropriate data processing methods are employed, 

which will be discussed below. 

In addition to missing values, geochemical data often has concentrations which fall below the 

detection limits (dl’s) of the methods used to measure them. Sophisticated methods for 

replacement usually require that the dataset be lognormally or normally distributed10, but our 

data did not meet that requirement. Farnham et al.10 simulated a data set and implemented 

variable dl’s such that fixed percentages of the data would fall below the detection limits. They 

then used PCA to show that replacing the data which fell below the dl with half of the dl value 

produced results generally closer to the original matrix than replacing the data with 0 or the full 

dl value. Therefore, we replaced values which fell below detection limits with half of the dl 

value. 

We then isometric log ratio (ilr) transformed the dataset. The ilr transformation is justified for 

geochemical data in many literature sources (e.g., 3, 4, 11). The ilr is a transformation which 

provides the coordinates of a composition with respect to some orthonormal basis computed  

from the centered log ratio (clr) hyperplane7. This clr hyperplane (and, therefore, the ilr 

transformation) meets the required properties of compositional data; namely, scaling invariance 

and subcompositional coherence7. The property of scaling invariance states that the size of the 

sample is irrelevant, which is an obvious necessity for compositional data. Imagine getting two 

water samples: one 1 kg and one 500g. Let the 1 kg sample contain 0.2 mmol of Na+. Let the 500 

g sample contain 0.1 mmol of Na+. Despite being outwardly different measurements, the two 

measurements clearly represent the same concentration. Subcompositional coherence essentially 

states that adding or subtracting components should not change the relationship between the data. 

Using a ternary diagram (or Piper plot) relies on subcompositional coherence because it 
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examines the relationships between only a few variables and requires that those results can be 

extrapolated to the full data set. In fact, the ilr transformation could be considered the x y 

coordinates of the points on a ternary diagram in a system that contains 3 components. 

Therefore, the ilr transformation occupies a D-1 dimensional space. Along the same analogy, the 

clr transformation takes the points from a ternary plot and projects them back into ℝD but in an 

orthonormal basis which is also perpendicular to the v=<1, 1, . . . ,1> vector, the vector 

representing the center of any ternary plot7. Since both the clr and ilr transformation meet the 

requirements for compositional data, they are both readily used for data processing and have 

their own strengths and weaknesses. 

The original data (from the NWIS dataset by USGS) had multiple measurements for some of 

the wells corresponding to different years and seasons. To avoid giving some of the wells large 

weights from being sampled more often, we averaged together all of the measurements that came 

from the same well at the same depth (in ilr space). There was no statistically significant 

difference in the spring vs. winter geochemistry at 95% confidence, which justifies averaging 

together the repeat measurements. We created a random sample of 30 wells that were sampled in 

both the late spring (May/June) and near winter (mostly November, January, and February). A 

hypothesis test on the null hypothesis that the mean spring geochemistry was equal to the mean 

summer geochemistry yielded a p-value of 0.9838, indicating that the null hypothesis could not 

be rejected at 95% confidence. 

Once all of the repeat measurements were averaged together in ilr space, they were 

transformed back to real space and then to clr space for hierarchical cluster analysis. This 

processing method for cluster analysis is recommended by van den Boogaart and Tolosana7, as 

clr transformation projects the compositional points into a coordinate system that can generate 
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effective euclidean distance matrices for the cluster analysis. Ward’s method for linkage was 

used along with the euclidean distance calculations using the dist() and hclust() r functions. Five 

clusters were chosen because, based on the cluster dendrogram, 5 was the minimum number of 

clusters which kept within-cluster variation (measured as euclidean distance) relatively small. 

There is a large gap between the within-cluster variation for 5 or more clusters and less than 5 

clusters. Despite the benefits of clr and ilr transformation in clustering, they destroy the original 

data structure and units; therefore, the original data was used to calculate descriptive statistics for 

the clusters. 
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Bulk chemistry of NATH core samples 
 

 

Table S1. Selected bulk chemical analyses of the core samples from the NATHC. 

Samples highlighted in grey are mudstones, while the samples in orange are sandstones, and 

samples in red are conglomerates. All tables displaying results from the NATHC follow this 

color scheme. 
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Mineralogy of NATH core samples by powder XRD 
 

 

Table S2. Bulk XRD results for the core samples. 
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Table S3. Detailed Clay and Carbonate bulk XRD results 
Separates % clay into % kaolinite, % illite, and % chlorite, and % carbonate into % dolomite, % 

calcite, and % ankerite. 



  11  

 

 

0.06 
 
 

0.05 
 
 

0.04 
 
 

0.03 
 
 

0.02 
 
 

0.01 
 
 

0.00 

0 2 4 6 

Fe (wt %) 

 
0.025 

 

 

0.020 
 
 

0.015 
 

 

0.010 
 

 

0.005 
 
 

0.000 

0 5 10 15 

Fe (wt %) 

Detailed results from NATH core chemical extractions 
 

Sample Depth Net Cr ox (ppb) UPW Cr AA (ppb) PO4 Cr AA (ppb) HHCl Cr AA (ppb) 6N HCl AA (ppb) Mn Oxides (ppm) 

1 322 35 BDL 47 BDL 758 93 

2 373 8 BDL 45 6 139 3520 

3 376 20 3 52 BDL 687 365 

4 402 111 2 45 1 377 55 

5 420 252 BDL 31 10 22 292 

6 429 114 BDL 38 BDL 116 74 

7 473 140 1 46 3 438 4635 

8 479 69 BDL 22 BDL 954 29 

9 485 51 6 53 BDL 1058 175 

10 502 13 BDL 53 4 2031 25 

11 535 25 2 55 14 890 382 

12 584 204 BDL 44 7 269 291 

13 595 59 3 59 BDL 717 156 

14 642 228 5 42 BDL 827 113 

Table S4. Results from chemical extractions. “Mn-oxides” corresponds to the Mn value of the 

supernatant of the selective Mn-HHCl extraction. The table is color-coded based on lithology. 

BDL=”below detection limit”. 
 
 

EPMA and SEM-EDXA data 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. S3. Calculated wt.% values calculated from Wavelength-Dispersive X-ray Spectroscopy 

(WDS) for individual points determined via EPMA on Norman Arsenic Test Hole (NATH) core 

samples from 323 ft deep (left) and 502 ft deep (right). 
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Figure S4. Backscattered electron image (upper left) and energy-dispersive X-ray analysis 
elemental maps (other panels, labelled with element of interest) collected on a thin section 

sample from the Norman Arsenic Test Hole core at 591 ft. depth. detailing a of a region showing 

a pore next to dolomite in Mn is enriched both in the relatively coarse-grained Mg-Ca rich 

dolomite area to the left in addition to the fine-grained Fe-enriched pore filling material that 

includes Fe, Mn oxides and clays. 
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