Supporting Information

Influence of pH and Electrolyte on the Deposition of Cerium Oxide Nanoparticles on Supported Lipid Bilayers

Wenyu Gu,^{†,‡,⊥} Xitong Liu,^{†, \parallel,\perp} and Peng Yi^{†,§,*}

[†] Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2686

[‡] Department of Civil and Environmental Engineering, Stanford University, Stanford, California, 94305-2004

^{II}Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States.

[§]Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, Florida 33431

[⊥]Both authors contributed equally to this work.

* Corresponding authors: Peng Yi, E-mail: pyi@fau.edu, Phone: (561) 297-2808

Contents

FIGURE S1. (a) High-resolution TEM image and (b) TEM-EDS spectrum of n-CeO₂.

FIGURE S2. Deposition rates of n-CeO₂ on DOPC SLBs and PLL as a function of NaCl concentration at pH 8.0. The concentration of n-CeO₂ was 6.83 mg/L.

FIGURE S3. EPMs of 25 mg/L DOPC vesicles as a function of CaCl₂ concentration at pH 5.5.

FIGURE S4. Influence of decreasing CaCl₂ concentration on the reversibility of n-CeO₂ deposition on DOPC SLBs at pH 2.0.

FIGURE S1. (a) High-resolution TEM image and (b) TEM-EDS spectrum of n-CeO₂.

FIGURE S2. Deposition rates of n-CeO₂ on DOPC SLBs and PLL as a function of NaCl concentration at pH 8.0. The concentration of n-CeO₂ was 6.83 mg/L.

FIGURE S3. EPMs of 25 mg/L DOPC vesicles as a function of CaCl₂ concentration at pH 5.5. Error bars represent standard deviations of triplicates.

FIGURE S4. Influence of decreasing CaCl₂ concentration on the reversibility of n-CeO₂ deposition on DOPC SLBs at pH 2.0.