A novel nano-sized red phosphorus decorated borocarbonitride heterojunction

with enhanced photocatalytic performance for tetracycline degradation

Yi Wang^{a,b}, Xing Zhao^a, Lan Wang^{c,*}, Yu Yang^b, Limin Jiao^a, Zhihao Wu^a, Xuan Gao^a, Sheng

Cheng^d, Mingzhang Lin^{a,*}

^a School of Nuclear Science and Technology, University of Science and Technology of China, Hefei,

Anhui 230026, China

^b Reactor Operation and Application Research Sub-Institute, Nuclear Power Institute of China,

Chengdu, Sichuan 610041, China

^c School of Materials, Sun Yat-sen University, Guangzhou, Guangdong 510275, China

^d Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, China

* To whom correspondence should be addressed. E-mail: <u>wanglan_only@163.com</u> (L. Wang), <u>gelin@ustc.edu.cn</u> (M. Z. Lin).

Fig. S1 FT-IR spectra of BCN, RP/BCN, and RP samples.

Fig. S2 TEM (a) and HR-TEM (b) images of BCN. FE-TEM images of BCN (c) and RP/BCN-40

(**d**).

Fig. S3 N₂ adsorption–desorption isotherms (**a**) and BET specific surface area in the inset, and the corresponding BJH pore size distribution (**b**) of BCN, RP/BCN-20 and RP/BCN-40 samples.

Fig. S4 TOC removal efficiency of TC over RP/BCN-40 under visible exposure.

Fig. S5 The UPLC-MS spectra of TC using RP/BCN-40 as the photocatalysts after 120-min

exposure.

Fig. S6 The band gaps of pure BCN and RP determined by the Tauc plot.

Fig. S7 The electrochemical Mott-Schottky curves for BCN (a) and RP (b).

Sample	B (at%)	C (at%)	N (at%)	P (at%)
BCN	51.59	10.73	37.33	_
RP/BCN-20	50.70	11.04	35.42	2.84
RP/BCN-40	49.51	11.28	34.63	4.59
RP	_	13.34	_	86.66

Table S1 Elemental analysis from XPS for BCN, RP/BCN, and RP samples.

Photocatalyst	Reaction condition	Degradation efficiency	Apparent rate constant	References
Ag ₃ PO ₄ -PN photocatalyst	TC, 0.03 mg mL ⁻¹ ; catalyst, 2 mg mL ⁻¹	85.0%, 120 min	0.0023 min^{-1}	[1]
LaFeO ₃ /SnS ₂ hybrid	TC, 0.02 mg mL ⁻¹ ; catalyst, 0.33 mg mL ⁻¹	28.8%, 120 min	$0.0028 \ min^{-1}$	[2]
BiOI/MIL-125(Ti) composite	TC, 0.02 mg mL ⁻¹ ; catalyst, 0.25 mg mL ⁻¹	70.0%, 240 min	0.0048 min ⁻¹	[3]
Polyaniline/Perylene diimide organic heterojunction	TC, 0.02 mg mL ⁻¹ ; catalyst, 0.5 mg mL ⁻¹	~70%, 120 min	0.0088 min ⁻¹	[4]
AgI/Zn ₃ V ₂ O ₈ heterojunction	TC, 0.02 mg mL ⁻¹ ; catalyst, 0.33 mg mL ⁻¹	45.4%, 60 min	0.0097 min ⁻¹	[5]
Porous hollow cube ZnFe ₂ O ₄	TC, 0.04 mg mL ⁻¹ ; catalyst, 0.5 mg mL ⁻¹	85.0%, 70 min	0.0118 min ⁻¹	[6]
Ag/g-C ₃ N ₄ plasmonic photocatalyst	TC, 0.02 mg mL ⁻¹ ; catalyst, 1.7 mg mL ⁻¹	83.0%, 120 min	0.0120 min ⁻¹	[7]
Cu ₂ O–TiO ₂ –Pal heterojunction	TC, 0.03 mg mL ⁻¹ ; catalyst, 1 mg mL ⁻¹	71.5%, 240 min	0.0129 min ⁻¹	[8]
ZnSnO ₃ /g-C ₃ N ₄ heterojunction	TC, 0.01 mg mL ⁻¹ ; catalyst, 0.5 mg mL ⁻¹	85.0%, 120 min	0.0131 min^{-1}	[9]
Sludge-TiO ₂ photocatalysts	TC, 0.005 mg mL ⁻¹ ; catalyst, 0.01 mg mL ⁻¹	76.3%, 120 min	0.0142 min ⁻¹	[10]
BiOCl microflowers co-modified with oxygen vacancies and Mn ²⁺	TC, 0.02 mg mL ⁻¹ ; catalyst, 1 mg mL ⁻¹	~79%, 15 min	0.0146 min ⁻¹	[11]
BiOCl/Bi ₂ Ti ₂ O ₇ nanorod	TC, 0.05 mg mL ⁻¹ ; catalyst, 1 mg mL ⁻¹	90.0%, 120 min	0.0158 min ⁻¹	[12]
Mn-doped SrTiO ₃ nanocubes	TC, 0.01 mg mL ⁻¹ ; catalyst, 1 mg mL ⁻¹	66.7%, 60 min	0.0166 min ⁻¹	[13]
γ -In ₂ Se ₃ nanoparticles	TC, 0.02 mg mL ⁻¹ ; catalyst, 1 mg mL ⁻¹	91.5%, 120 min	0.0175 min ⁻¹	[14]
Cl-doped porous g - C ₃ N ₄ nanosheets	TC, 0.01 mg mL ⁻¹ ; catalyst, 0.5 mg mL ⁻¹	92.0%, 120 min	0.0201 min ⁻¹	[15]
Carbon dots modified ZnSnO ₃	TC, 0.02 mg mL ⁻¹ ; catalyst, 1 mg mL ⁻¹	81.8%, 60 min	0.0231 min ⁻¹	[16]
RP/BCN-40	TC, 0.02 mg mL ⁻¹ ; catalyst, 0.5 mg mL ⁻¹	73.8%, 90 min	0.0224 min^{-1}	This work

 Table S2 Comparison of TC degradation efficiency and apparent rate constant with previously

 reported photocatalysts.

References

1. Q. Yan, M. Xu, C. Lin, J. Hu, Y. Liu and R. Zhang, Efficient photocatalytic degradation of tetracycline hydrochloride by Ag₃PO₄ under visible-light irradiation, *Environ. Sci. Pollut. R.*, 2016, **23**, 14422-14430.

2. L. Jin, L. Rong, Y. Chen, X. Zhou, X. Ning, Z. Liang, M. Lin, X. Xu, L. Xu and L. Zhang, Rational design of Z-scheme LaFeO₃/SnS₂ hybrid with boosted visible light photocatalytic activity towards tetracycline degradation, *Sep. Purif. Technol.*, 2019, **210**, 417-430.

3. W. Jiang, Z. Li, C. Liu, D. Wang, G. Yan, B. Liu and G. Che, Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst, *J. Alloys Compd.*, 2021, **854**, 157166.

4. W. Dai, L. Jiang, J. Wang, Y. Pu, Y. Zhu, Y. Wang and B. Xiao, Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D Polyaniline/Perylene diimide organic heterojunction under visible light irradiation, *Chem. Eng. J.*, 2020, **397**, 125476.

5. J. Luo, X. Ning, L. Zhan and X. Zhou, Facile construction of a fascinating Z-scheme AgI/Zn₃V₂O₈ photocatalyst for the photocatalytic degradation of tetracycline under visible light irradiation, *Sep. Purif. Technol.*, 2020, **255**, 117691.

6. Y. Cao, X. Lei, Q. Chen, C. Kang, W. Li and B. Liu, Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe₂O₄, *J. Photoch. Photobio. A*, 2018, **364**, 794-800.

7. W. Xu, S. Lai, S. C. Pillai, W. Chu, Y. Hu, X. Jiang, M. Fu, X. Wu, F. Li and H. Wang, Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: degradation pathways and mechanism, *J. Colloid Interface Sci.*, 2020, **574**, 110-121.

 Y. Shi, Z. Yang, B. Wang, H. An, Z. Chen and H. Cui, Adsorption and photocatalytic degradation of tetracycline hydrochloride using a palygorskite-supported Cu₂O–TiO₂ composite, *Appl. Clay Sci.*, 2016, 119, 311-320.

9. Xiliu, Huang, Feng, Guo, Mingyang, Li, Hongji, Ren and Yu, Hydrothermal synthesis of $ZnSnO_3$ nanoparticles decorated on $g-C_3N_4$ nanosheets for accelerated photocatalytic degradation of tetracycline under the visible-light irradiation, *Sep. Purif. Technol.*, 2020, **230**, 115854.

10. X. Zhu, W. Yuan, M. Lang, G. Zhen, X. Zhang and X. Lu, Novel methods of sewage sludge

utilization for photocatalytic degradation of tetracycline-containing wastewater, *Fuel*, 2019, **252**, 148-156.

11. H. Yu, D. Ge, Y. Liu, Y. Lu, X. Wang, M. Huo and W. Qin, One-pot synthesis of BiOCl microflowers co-modified with Mn and oxygen vacancies for enhanced photocatalytic degradation of tetracycline under visible light, *Sep. Purif. Technol.*, 2020, **251**, 117414.

12. Y. Xu, D. Lin, X. Liu, Y. Luo, H. Xue, B. Huang, Q. Chen and Q. Qian, Electrospun BiOCl/Bi₂Ti₂O₇ nanorod heterostructures with enhanced solar light efficiency in the photocatalytic degradation of tetracycline hydrochloride, *ChemCatChem*, 2018, **10**, 2496-2504.

 G. Wu, P. Li, D. Xu, B. Luo, Y. Hong, W. Shi and C. Liu, Hydrothermal synthesis and visible-lightdriven photocatalytic degradation for tetracycline of Mn-doped SrTiO₃ nanocubes, *Appl. Surf. Sci.*, 2015, 333, 39-47.

14. X. Wei, H. Feng, L. Li, J. Gong, K. Jiang, S. Xue and P.K. Chu, Synthesis of tetragonal prismatic γ -In₂Se₃ nanostructures with predominantly {110} facets and photocatalytic degradation of tetracycline, *Appl. Catal. B*, **260**, 118218-118218.

15. F. Guo, M. Li, H. Ren, X. Huang, K. Shu, W. Shi and C. Lu, Facile bottom-up preparation of Cldoped porous *g*-C₃N₄ nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, *Sep. Purif. Technol.*, 2019, **228**, 115770.

16. F. Guo, X. Huang, Z. Chen, H. Sun and W. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO₃ cubes: Mechanism and degradation pathway, *Sep. Purif. Technol.*, **253**, 117518.