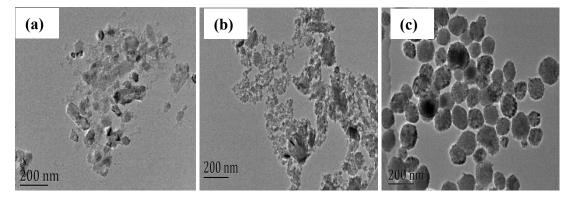
Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supplementary materials


Insights on Pb(II) retention and immobilization by ferrihydrite in the presence of Al(III) and oxalic acid

Peijing Yua, Parisa A. Ariyab,c, Fenglian Fua,*, Bing Tanga

^a School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

^b Department of Atmospheric & Oceanic Sciences, McGill University, Montreal,
PQ H3A 0B9, Canada

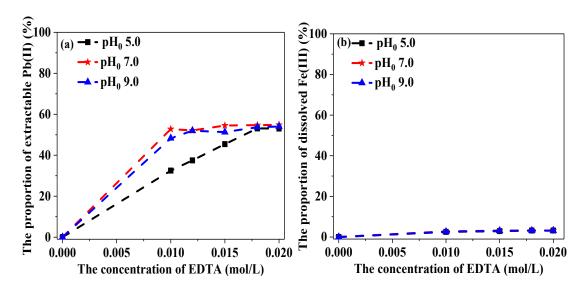
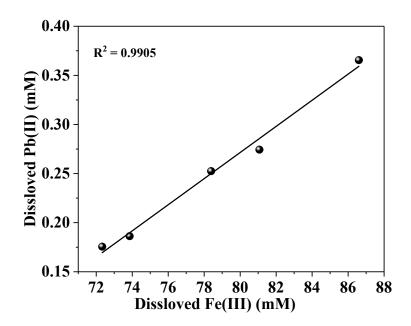

^c Department of Chemistry, McGill University, Montreal, PQ H3A 0B8, Canada

Fig. S1 TEM of (a) Fh-Pb, (b) Fh-Al-Pb in the absence of oxalic acid and (c) Fh-Al-Pb in the presence of oxalic acid after transformation (pH $_0$ 7.0).


E-mail address: fufenglian2006@163.com (Fenglian Fu)

^{*} Corresponding author.

Fig. S2 The proportions of (a) extractable Pb(II) and (b) dissolved Fe(III) under different concentrations of EDTA during Fh-Pb aging.

According to Fig. S2(a), the proportion of extractable Pb(II) increased with the increase of EDTA concentration firstly and reached a stable level after 0.0175 M at all initial pH values. To extract more Pb(II) and reduce the use of EDTA, 0.02 M EDTA was chosen in this study.

Fig. S3 Linear correlations between total dissolved Pb(II) and total dissolved Fe(III) during transformation of Fh-Al-Pb in the presence of oxalic acid for 120 min.

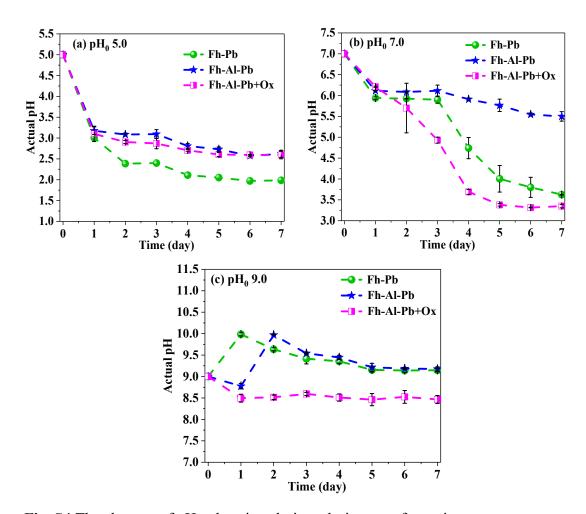
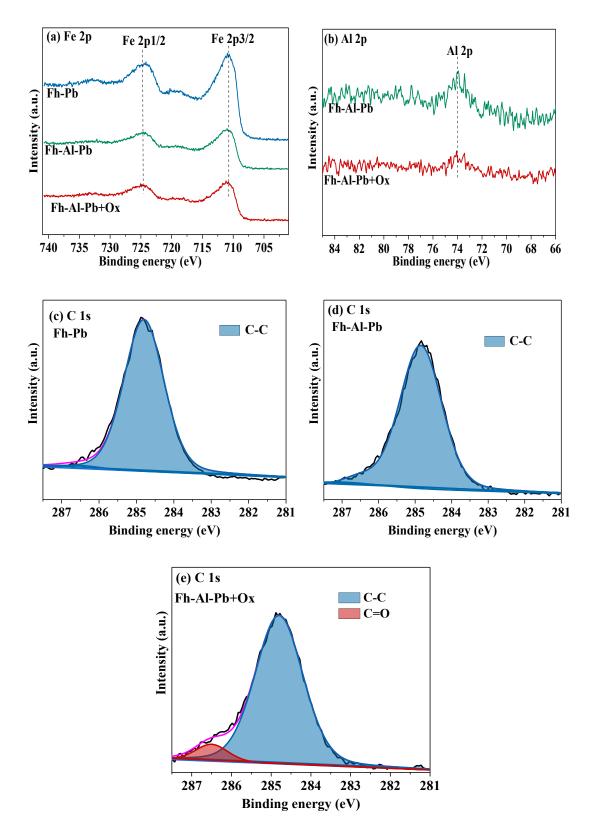



Fig. S4 The changes of pH values in solutions during transformation.

Fig. S5 (a) Fe 2p spectra, (b) Al 2p spectra, (c) C 1s spectra of Fh-Pb, (d) C 1s spectra of Fh-Al-Pb in the absence of oxalic acid and (e) C 1s spectra of Fh-Al-Pb in the presence of oxalic acid.

Table S1 Proportions of the transformation products of Fh-Pb, Fh-Al-Pb and Fh-Al-Pb with oxalic acid at initial pH of 5.0, 7.0 and 9.0.

Sample		Fh-Pb			Fh-Al-Pb			Fh-Al-Pb+Ox		
Mineral phase	Time	Ferrihydrite	Goethite	Hematite	Ferrihydrite	Goethite	Hematite	Ferrihydrite	Goethite	Hematite
pH_0	(day)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
-	0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
5.0	4	16.8	10.2	73.0	53.1	0.0	46.9	6.9	0.0	93.1
	7	3.9	9.3	86.8	17.7	0.0	82.3	1.8	0.0	98.2
	0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
7.0	4	22.3	34.1	43.6	99.9	0.0	0.1	2.1	0.0	97.9
	7	5.1	22.1	72.8	55.9	0.0	44.1	1.8	0.0	98.2
9.0	0	100.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0
	4	17.8	13.0	69.2	15.8	0.0	84.2	4.7	0.0	95.3
	7	0.1	15.3	84.6	1.9	0.0	98.1	1.7	0.0	98.3

Table S2 Oxygen-containing functional groups proportion of samples after ageing for 7 days.

Oxygen-containing	After aging						
functional groups	Fh-Pb (%)	Fh-Al-Pb (%)	Fh-Al-Pb+Ox (%)				
М-О	43.0	45.6	46.3				
М-ОН	42.0	44.4	37.5				
H_2O	15.0	10.0	16.2				