Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supporting Information

A Dual-Emission Ratiometric Fluorescence Probe for Highly Selective and Simultaneous Detection of Tetracycline and Ferric ions in Environmental Water Samples Based on the Boron-Doped Carbon Quantum Dots/CdTe-Eu³⁺ Composite

Mengqi Huang, Changlun Tong*

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

Corresponding author. E-mail: cltong@zju.edu.cn.

Table of contents

1. Figure S1 UV-vis absorption spectra of B-CQDs and B-CQDs-Fe ³⁺ and fluorescence
spectra of B-CQDs in the presence of Fe ³⁺ and EDTAS-2
2. Figure S2 Optimization of the detection conditions-composition ratios,
concentration of B-CQDs, and excitation spectraS-3
3. Figure S3 Optimization of the detection conditions-pH and equilibrium
time
4. Table S1 Comparison of the proposed method with reported analytical methods for
TC detection

Figure S1. (A) UV-vis absorption spectra of B-CQDs and B-CQDs +Fe³⁺, conditions: B-CQDs: 50.0 mg/L, Fe³⁺: 15.0 μ M, Tirs-HCl buffer: 25 mM, pH=8.0. (B) Fluorescence spectra of B-CQDs in the presence of Fe³⁺ and EDTA, conditions: B-CQDs: 6.0 mg/L, Fe³⁺: 15.0 μ M, EDTA: 20.0 μ M, Tirs-HCl buffer: 25 mM, pH=8.0, λ_{ex} =270 nm.

Figure S2. (A) Effect of the composition ratios of Eu³⁺/CdTe on fluorescence recover efficiency of the CdTe-Eu³⁺ system in the presence of TC; (B) Effect of the concentrations of B-CQDs on the fluorescence quenching efficiency of B-CQDs caused by Fe³⁺; (C) Effect of the composition ratios of B-CQDs/CdTe-Eu³⁺ on the fluorescence intensity of the B-CQDs/CdTe-Eu³⁺ probe; (D) Excitation spectra of B-CQDs and CdTe-Eu³⁺.

Figure S3. (A) Effect of pH on the fluorescence intensities of the B-CQDs/CdTe-Eu³⁺ probe; (B) Effect of pH on the fluorescence intensity ratio of F/F_0 caused by TC and Fe³⁺; (C) Effect of equilibrium time on the fluorescence intensities of CdTe-Eu³⁺ in the presence of TC; (D) Effect of equilibrium time on the fluorescence intensities of B-CQDs in the presence of Fe³⁺. Conditions: B-CQDs: 6.0 mg/L, CdTe-Eu³⁺: 10.0 mg/L, TC: 2.0 μ M, Fe³⁺: 15.0 μ M, Tris-HCl buffer: 25 mM, λ_{ex} =270 nm.

Methods	Materials	Linear range (µM)	LOD	
			(µM)	References
Fluorometric	F,N-GQDs	2-30	0.077	[S1]
Fluorometric	P-CDs	0.02-0.8	0.012	[S2]
Fluorometric	N,S-CDs	0.369-73.7	0.148	[S3]
Fluorometric	Luminol-Eu-Cit	0.5-80	0.039	[S4]
Fluorometric	QDs-MIP	0.5-15	0.14	[S5]
Colorimetric	CNNPs	0.8-400	0.12	[S6]
Colorimetric	MIP-PC	0.01-0.15	0.002	[S7]
Electrochemical	CB-PS/GCE	5-120	1.15	[S8]
Electrochemical	aptasensor	22.4-6750	22.4	[S9]
Fluorometric	B-CQDs/CdTe-Eu ³⁺	0.01-2.0	0.0042	This work

 Table S1. Comparison of the proposed method with reported analytical methods for

References

TC detection

[S1] C.X. Wang, D. Chen, Y. S. Yang, S. Y. Tang, X. M. Li, F. Xie, G. Wang and Q. L. Guo, Synthesis of multi-color fluorine and nitrogen co-doped graphene quantum dots for use in tetracycline detection, colorful solid fluorescent ink, and film, *J. Colloid Interface Sci.*, 2021, 602, 689-698.

- [S2] C. S. Lu, Q. Su and X. M. Yang, Ultra-long room-temperature phosphorescent carbon dots: pH sensing and dual-channel detection of tetracyclines, *Nanoscale*, 2019, **11**, 16036-16042.
- [S3] N. Zhao, Y. Wang, S. S. Hou and L. S. Zhao, Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging, *Microchim. Acta*, 2020, 187, 351.
- [S4] R. H. Yao, Z. J. Li, G. Liu, C. B. Fan and S. Z. Pu, Luminol-Eu-based ratiometric fluorescence probe for highly selective and visual determination of tetracycline, *Talanta*, 2021, 234, 122612.
- [S5] Y. Q. Yang, H. Niu and H. Q. Zhang, Direct and highly selective drug optosensing in real, undiluted biological samples with quantum-dot-labeled hydrophilic molecularly imprinted polymer microparticles, *ACS Appl. Mater. Interfaces*, 2016, 8, 15741-15749.
- [S6] B. T. Huy, N. N. Nghia and Y. Lee, Highly sensitive colorimetric paper-based analytical device for the determination of tetracycline using green fluorescent carbon nitride nanoparticles, *Microchem. J.*, 2020, **158**, 105151.
- [S7] J. Hou, H. C. Zhang, Q. Yang, M. Z. Li, L. Jiang and Y. L. Song, Hydrophilic– hydrophobic patterned molecularly imprinted photonic crystal sensors for highsensitive colorimetric detection of tetracycline, *Small*, 2015, **11**, 2738-2742.
- [S8] K. P. Delgado, P. A. Raymundo-Pereira, A. M. Campos, O. N. Oliveira Jr. and B.C. Janegitz, Ultralow cost electrochemical sensor made of potato starch and carbon

black nanoballs to detect tetracycline in waters and milk, *Electroanalysis*, 2018, **30**, 2153-2159.

[S9] T. H. Le, V. P. Pham, T. H. La, T. B. Phan and Q. H. Le, Electrochemical aptasensor for detecting tetracycline in milk, *Adv. Nat. Sci: Nanosci. Nanotechnol.*, 2016, 7, 15008.