Electronic supplementary information (ESI)

SO₂-Tolerant Catalytic Reduction of NO_x via Confining Active

Species in TiO₂ Nanotubes

Ziqiang Xu, ^a Sarawoot Impeng, ^b Xinyu Jia, ^a Fuli Wang, ^a Yongjie Shen, ^a Penglu

Wang, ^{a,*} and Dengsong Zhang ^{a,*}

^a International Joint Laboratory of Catalytic Chemistry, Department of Chemistry,

College of Sciences, Shanghai University, Shanghai 200444, P. R. China.

^b National Nanotechnology Center, National Science and Technology Development

Agency, Pathum Thani, 12120, Thailand.

*E-mail: dszhang@shu.edu.cn; plwang@shu.edu.cn.

The Supporting Information includes 47 Pages, 29 Figures and 6 Tables.

Table of Contents

Synthesis of Catalysts	S4
Catalysts Characterization	S6
DFT Calculations	S10
Figure S1	S11
Figure S2	S12
Figure S3	S13
Figure S4	S14
Figure S5	S15
Figure S6	S16
Figure S7	S17
Figure S8	S18
Figure S9	S19
Figure S10	S20
Figure S11	S21
Figure S12	S22
Figure S13	
Figure S14	
Figure S15	S25
Figure S16	S26
Figure S17	S27

Figure S18	S28
Figure S19	S29
Figure S20	S30
Figure S21	S31
Figure S22	
Figure S23	S33
Figure S24	S34
Figure S25	S35
Figure S26	S36
Figure S27	
Figure S28	S38
Figure S29	S40
Table S1	S41
Table S2	S42
Table S3	S43
Table S4	S44
Table S5	S45
Table S6	S46
REFERENCES	S47

Synthesis of Catalysts

Synthesis of TiO₂ nanotubes (NTs): The preparation of TiO₂ NTs was completed by a typical hydrothermal method. 2 g P25 powder and 70 mL of 10 mol/L NaOH solution were added into a Teflon autoclave and stirred for 6 h. After mixing evenly, the autoclave was placed into the oven at 130 °C for 24 h to conduct the hydrothermal reaction. After the hydrothermal reaction was completed, the transparent liquid in the upper layer of autoclaves was poured out. The white precipitation in the under layer was collected and washed with 0.1 mol/L HCl solution to ensure the pH of suspension solution equal to 1.6. At this point, the original large granular sediment gradually changed into fine particles. The suspension was then washed several times with deionized water until its pH was equal to 7. The excess aqueous solution was poured out and the white sediment was soaked into anhydrous ethanol at room temperature for 24 h. After the ethanol treatment was completed, the sediment was filtered, dried in an oven at 80 °C to obtain the TiO₂ NTs.

Synthesis of CuO-out-TiO₂ NTs: To study the confinement effect on the SCR performance and SO₂ tolerance with CuO-TiO₂ NTs, the CuO-out-TiO₂ NTs was synthesized. In details, 0.5 g ethanol treated TiO₂ NTs was immerged in superfluous xylene for 12 h to packing the tubular channels, followed by the addition of aqueous solution with 0.0756 g Cu(NO₃)₂·3H₂O dissolved. Then a solution of NH₄HCO₃ dissolved in aqueous ammonia (26-28%) was added to facilitate the extraction of NTs from xylene into the aqueous phase. After stirring for 6 h, a standing and layering

process for the solutions was followed. Then, the mixture was evaporated at 80 °C under stirring for 1 h. Subsequently, the mixture was centrifuged, washed (at least 3 times with deionized water), dried in an oven at 80 °C for 12 h, and calcined in a muffle furnace at 400 °C for 4 h in static air with a heating rate of 2 °C/min. The catalyst was designated as CuO-out-TiO₂ NTs for copper oxides supported outside TiO₂ NTs.

Catalysts Characterization

The microstructure of the catalyst was observed using a transmission electron microscope (TEM, JEM-200CX) and a high-resolution transmission electron microscope (HRTEM, JEM-2100F). The X-ray Diffraction (XRD) diffraction pattern was obtained by X-ray diffractometer (3KW D/MAX2200V PC, Japan) with Cu Ka (40 kV, 40 mA) radiation in the 2 θ range of 10° to 90° with a scan rate of 8°/min. The Raman spectra of catalysts was obtained by using Raman spectrometer (LabRAM HR Evolution, Horiba, France) with the laser at 532 nm as the excitation source. The UVvis diffuse reflectance (UV-vis) spectra were recorded by the UV-vis spectrophotometer (UV-vis absorbance, Cary5000, 229 Agilent, USA). Additionally, BaSO₄ was used as a reference in the range of 200~900 nm at room temperature. X-ray photoelectron spectroscopy (XPS) system equipped with Al Ka radiation (PHI-5300) could be applied to research the surface atomic valence of catalysts. and the binding energy was calibrated by the containment carbon peak (C 1s = 284.8 eV). The microstructure and element distribution of the catalyst was observed by HRTEM-EDX (JEOL JEM-2100F) at 200 kV. The chemical composition and atomic proportion of the materials were measured by Agilent 7700 inductively coupled plasma-atomic emission spectrometry (ICP-AES). Nitrogen adsorption-desorption tests were measured at 77 K by a nitrogen adsorption instrument (U.S. Quanta chrome ASAP 2020M), and the specific surface area was calculated by the Brunaue-Emmett-Teller (BET) method. The impurities adsorbed on the catalyst was removed by vacuum degassing effectively at 200 °C for

10 h before the BET tests. The redox performances of catalysts were obtained by the hydrogen temperature-programmed Reduction (H2-TPR) which was conducted on a Micromeritics AutoChem 2950 II auto-adsorption apparatus with a thermal conductivity detector (TCD). Previously, 80 mg of each catalyst was treated under Ar atmosphere with a flow rate of 30 ml/min at 300 °C for 30 min, then cooled to room temperature under Ar atmosphere. Afterwards H2-TPR program runed in which the catalysts were exposed to 10 % H₂/Ar and the reactor temperature raised from room temperature to 900 °C with a rate of 10 °C/min. The Micromeritics AutoChem 2920 II auto-adsorption apparatus was employed for NH₃ temperature-programmed desorption experiments (NH₃-TPD) with a TCD and Mass spectrometer (OMNISTAR) to monitor the NH₃. Similarly, before the NH₃-TPD experiments, 80 mg of catalysts were outgassed under He protection (30 ml/min) at 300 °C for 30 min and then cooled to 100 °C. Then, samples were exposed to 4% NH₃/He for 1h at 100 °C, followed by purging for 1 h with He to remove the physically adsorbed NH₃. Finally, the temperature was raised to 900 °C with a ramping rate of 10 °C/min. The Tianjin XQ TP-5080 autoadsorption apparatus equipped with a TCD monitor and Mass spectrometer (OMNISTAR) was employed for performing $SO_2 + O_2$ temperature-programmed desorption mass spectra experiments (SO₂ + O₂-TPD-MS). Prior to the TPD experiments, 80 mg of catalysts were treated under He protection (30 mL/min) at 300 °C for 30 min, then cooled to 100 °C. Samples were exposed to 500 ppm SO₂ + 5% O₂/N₂ for 1h at 30 °C, and purged by N₂ for 1 h at the same temperature. Finally, the temperature was raised to 900 °C with a ramping rate of 10 °C/min. And the Tianjin XQ TP-5080 auto-adsorption equipped with a TCD monitor and Mass spectrometer (OMNISTAR) was also used for performing temperature-programmed decomposition (TPDC) experiments. Prior to the TPDC experiments, 80 mg of sulfated catalysts were treated under He protection (30 mL/min) at 300 °C for 30 min, and then cooled to 100 °C. Samples were exposed to 1000 ppm NO + 5% O₂/N₂ for 1 h at 30 °C, and purged by N₂ for 1 h at the same temperature. Finally, the temperature raised to 900 °C with a ramping rate of 10 °C/min.

In situ diffuse reflectance infrared Fourier transform spectroscopy (*in situ* DRIFTS) experiments were studied on a Nicolet 6700 spectrometer with a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. All DRIFTS were collected in the wavenumber range of 4000 cm⁻¹ to 1000 cm⁻¹ in the Kubelka-Munk format, accumulating 64 scans per minute at 4 cm⁻¹ resolution. Prior to each test, each sample was pre-treated at 300 °C under N₂ flow for 0.5 h and then regulated to the target temperature to obtain a background spectrum which should be deducted from the sample spectra. Prior to collecting a sample spectrum, it was necessary to collect a background spectrum at the target temperature which needed to be deducted from the sample spectra. As for the adsorption of NH₃, NO + O₂ or SO₂ + O₂ studies, after obtaining the background spectra at different temperatures, the catalysts were exposed to a flow of 1000 ppm of NH₃, 1000 ppm NO + 5 vol% O₂ or 1000 ppm SO₂ + 5 vol% O₂ at 30 °C for 1 h. The desorption process then went on under a flow of N₂ and was

recorded at corresponding temperatures of background spectrum. Furthermore, for the transient reactions between 1000 ppm NO + 5 vol% O_2 (NH₃) and pre-adsorbed 1000 ppm NH₃ (or NO + O₂), after the same pretreatment, the catalysts were exposed to NH₃ (or NO + O₂) for the adsorption. One hour later, the samples were switched to a flow of NO + O₂ (or NH₃) and meanwhile the reaction process was recorded as a function of time. For the transient reactions between 1000 ppm NO +100 ppm SO₂ + 5 vol% O₂ (NH₃) and pre-adsorbed 1000 ppm NH₃ (or NO + SO₂ + O₂), after the same pretreatment, the catalysts were exposed to NH₃ (NO + SO₂ + O₂) for the adsorption. One hour later, the same pretreatment, the catalysts were exposed to NH₃ (NO + SO₂ + O₂) for the adsorption.

DFT calculations

To better understand the interaction between metal oxide catalysts and TiO₂ supports, periodic DFT calculations were performed with the Vienna *ab initio* simulation package (VASP). ¹ The projector-augmented wave pseudopotentials ² were used for the electrons-nucleus interactions, whereas the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional was employed for the exchange-correlation of electrons. ³ An energy cutoff of 400 eV was selected for the plane wave basis. The van der Waals interaction was corrected using the DFT-D3 method of Grimme *et al.*⁴ We set the k-point of the Brillouin zone to $3 \times 3 \times 1$ for all calculations. ⁵ Based on Dudarev's approach, ⁶ the Hubbard correction was applied to the Ti 3d states in which a single parameter U_{eff} was chosen to be 5.0 eV. The criterions of the electron self-consistent energy and the force convergence were 10^{-5} eV and 0.03 eV/Å, respectively.

For Ti₃H₂O₇ (110) surface, a unit cell of 9.47 Å × 16.35 Å × 25.62 Å containing a total of 96 atoms separated by a vacuum space of 18 Å was employed. The adsorption energy of each metal oxide catalyst (MOC) on Ti₃H₂O₇ (110) surface was calculated as: $E_{ads} = E_{MOC/surface} - (E_{MOC} + E_{surface})$

where $E_{\text{species/surface}}$ is the total energy of MOC/surface complex. And E_{MOC} and E_{surface} are the total energies of corresponding MOC and surface, respectively. The more negative value indicates the stronger interaction.

Figure S1. Schematic illustration of the synthesis procedure of CuO-TiO₂ NPs and

CuO-out-TiO₂ NTs.

Figure S2. Plots of NO_x conversion as a function of reaction temperature over CuO-TiO₂ NTs supported with different contents of CuO. Reaction conditions: 500 ppm of NO, 500 ppm of NH₃ and 5 vol% O₂, N₂ as the balance gas, and GHSV of 50,000 h⁻¹.

Figure S3. Plots of NO_x conversion as a function of reaction time over CuO-TiO₂ NTs and CuO-TiO₂ NPs at 270 °C. Reaction conditions: 500 ppm of NO, 500 ppm of NH₃ and 5 vol% O₂, N₂ as the balance gas, and GHSV of 50,000 h⁻¹.

Figure S4. Plots of NO_x conversion (solid line) and N₂ selectivity (dash line) as a function of reaction temperature over CuO-out-TiO₂ NTs. Reaction conditions: 270 °C, 500 ppm of NO, 500 ppm of NH₃ and 5 vol% O₂, N₂ as the balance gas, and GHSV of 50,000 h^{-1} .

Figure S5. Plots of NO_x conversion as a function of reaction time over CuO-out-TiO₂ NTs in the presence of SO₂. Reaction conditions: 270 °C, 500 ppm of NO, 500 ppm of NH₃, 5 vol% O₂, 100 ppm of SO₂, N₂ as the balance gas, and GHSV of 50,000 h^{-1} .

Figure S6. Plots of NO_x conversion as a function of reaction time over CuO-TiO₂ NTs and CuO-TiO₂ NPs in the presence of SO₂. Reaction conditions: 270 °C, 500 ppm of NO, 500 ppm of NH₃, 5 vol% O₂, 100, 250, 500 ppm of SO₂, N₂ as the balance gas, and GHSV of 50,000 h^{-1} .

Note: With SO₂ concentration increasing to 250 and 500 ppm, the NO_x conversion of CuO-TiO₂ NTs decreased to 75% after introducing SO₂ for 10 h and recovered to 86% after removing SO₂ for 2 h. By comparison, the NO_x conversion of CuO-TiO₂ NPs decreased to 39% after introducing SO₂ for 10 h and almost unchanged after removing SO₂ for 2 h.

Figure S7. Plots of NO_x conversion as a function of reaction time over CuO-TiO₂ NTs and CuO-TiO₂ NPs in the presence of SO₂ and H₂O. Reaction conditions: 270 °C, 500 ppm of NO, 500 ppm of NH₃, 5 vol% O₂, 5 vol% H₂O, 100 ppm of SO₂, N₂ as the balance gas, and GHSV of 50,000 h^{-1} .

Figure S8. TEM images of (A) CuO-TiO2 NTs, (B) CuO-TiO2 NPs and (C) CuO-out-

TiO₂ NTs.

Figure S9. HRTEM image of CuO-TiO₂ NTs.

Figure S10. (a) STEM image and EDX mapping results of (b) Cu, (c) O, (d) Ti,

(e) S, (f) N elements distribution for the CuO-TiO₂ NTs (s).

Figure S11. (a) STEM image and EDX mapping results of (b) Cu, (c) O, (d) Ti,

(e) S, (f) N elements distribution for the CuO-TiO₂ NPs (s).

Figure S12. XRD patterns of CuO-out-TiO₂ NTs.

Figure S13. N₂ adsorption-desorption isotherm and BJH mesopore size distribution profiles (inset) of CuO-TiO₂ NTs.

Figure S14. N₂ adsorption-desorption isotherm and BJH mesopore size distribution profiles (inset) of CuO-TiO₂ NPs.

Figure S15. N₂ adsorption-desorption isotherm and BJH mesopore size distribution profiles (inset) of CuO-out-TiO₂ NTs.

Figure S16. H₂-TPR profile of CuO-out-TiO₂ NTs.

Figure S17. XPS spectra of Cu 2p over (a) CuO-out-TiO₂ NTs and (b) CuO-out-TiO₂

NTs (s).

Figure S18. XPS spectra of O 1s over (a) CuO-TiO₂ NTs, (b) CuO-TiO₂ NPs, (c) CuOout-TiO₂ NTs, (d) CuO-TiO₂ NTs (s), (e) CuO-TiO₂ NPs (s) and (f) CuO-out-TiO₂ NTs (s).

Note: In regard of the increase of $O_{\alpha}/O_{\alpha}+O_{\beta}$ for CuO-out-TiO₂ NTs (s) was slightly less than that of CuO-TiO₂ NTs (s), one reasonable explanation was that the penetration depth of XPS is about 2-3 nm, which can detect oxygen containing species in the tubes. Owing to the sulfates species mainly deposited outside CuO-out-TiO₂ NTs (s), for CuOout-TiO NTs (s), it could be liable that the oxygen derived from the formed sulfates species in the tubes were lower than that of CuO-TiO₂ NTs (s).

Figure S19. XPS spectra of S 2p over (a) CuO-TiO₂ NTs (s) and (b) CuO-TiO₂ NPs (s) catalysts.

Note: The peaks of binding energy at 166.0-171.0 eV were ascribed to S^{6+} which derived from SO_4^{2-} . Additionally, the peaks of binding energy at 157.0-161.0 eV and 161.0-166.0 eV were ascribed to the low valence state of S which generated by the high-energy electron bombard abundant S on the surface of CuO-TiO₂ NPs (s). ⁷ Owing to the quantity of sulfates species deposited on the surface of CuO-TiO₂ NPs (s) was much more than that of CuO-TiO₂ NTs (s), it would lead the surface sulfates to be more prone to facilitate the low valence state of S under the XPS electron bombardment.

Figure S20. UV-vis absorption spectra of pure TiO₂ NTs and pure TiO₂ NPs.

Figure S21. UV-vis absorption spectra of CuO-out-TiO₂ NTs and CuO-out-TiO₂ NTs

(s).

Figure S22. NH₃-TPD-MS profiles of (a) pure TiO₂ NTs and (b) pure TiO₂ NPs.

Figure S23. NH₃-TPD-MS profiles of CuO-out-TiO₂ NTs.

Figure S24. *In situ* DRIFTS of NH₃ desorption after 1000 ppm NH₃ pre-adsorbed for 1 h as a function of temperature over CuO-out-TiO₂ NTs.

Note: The peaks appearing at 1653 cm⁻¹, 1475 cm⁻¹ and 1430 cm⁻¹ were attributed to the symmetric bending vibrations of N-H for the NH_4^+ on Brønsted acid sites. Otherwise, the bands at 1601 cm⁻¹, 1268 cm⁻¹, 1236 cm⁻¹, and 1177 cm⁻¹ were attributed to NH_3 on Lewis acid sites. ⁸⁻¹⁰

Figure S25. In situ DRIFTS of NO + O_2 desorption after 1000 ppm NO + 5 vol% O_2 pre-adsorbed for 1 h as a function of temperature over (a) CuO-TiO₂ NTs, (b) CuO-TiO₂ NPs and (c) CuO-out-TiO₂ NTs.

Figure S26. The most stable adsorption configuration for SO₂ adsorbed on the $H_2Ti_3O_7$ (110) sites on the CuO-TiO₂ NTs surface. Red, yellow, light blue, dark blue and white balls denote O, S, Ti, Cu and H atoms, respectively.

Figure S27. The most stable adsorption configuration for NO on isolated (a) CuO-TiO₂ NTs and (b) CuO-TiO₂ NPs surfaces. Grey, Red, light blue, dark blue and white balls denote N, O, Ti, Cu and H atoms, respectively.

Figure S28. *In situ* DRIFTS and the corresponding mapping results of the transient reactions at 200 °C between 1000 ppm NO + 5 vol% O₂ and pre-adsorbed 1000 ppm NH₃ for 1 h as a function of time over (a, a') CuO-TiO₂ NTs and (b, b') CuO-TiO₂ NPs. Note: For the CuO-TiO₂ NTs, after the pre-adsorption of 1000 ppm NH₃ for 1 h, the band at 1180 cm⁻¹ was attributed to the asymmetric bending vibration of the N-H bond of NH₃ on the Lewis site. The bands presented at 1245 cm⁻¹ and 1601 cm⁻¹ were also associated with NH₃ on Lewis acid sites. ^{11, 12} With 1000 ppm NO + 5 vol% O₂ were introduced, the NH₃ on Lewis acid sites was gradually depleted within 30 min. In addition, the bands at 1602 cm⁻¹, 1578 cm⁻¹, 1293 cm⁻¹ and 1249 cm⁻¹ corresponded to gaseous NO₂, bidentate nitrates, nitro compound and bridging species emerged, respectively. ⁸ The peak intensity of all adsorbed species gradually enhanced with the NO + O₂ introducing. In contrast, after the pre-adsorption of 1000 ppm NH₃ for 1 h, the quite weak bands at 1599 cm⁻¹, 1250 cm⁻¹ and 1176 cm⁻¹ also corresponded to NH₃ on

Lewis acid sites appeared over the CuO-TiO₂ NPs catalyst, which further declared the weaker surface acidity and NH₃ adsorption on CuO-TiO₂ NPs. With the introduction of 1000 ppm NO + 5 vol% O₂, the weak adsorbed NH₃ on Lewis acid sites vanished, with the weak peak at 1578 cm⁻¹ which belonged to split V₃ vibrations of bidentate nitrates was apparent gradually. ¹³

Figure S29. *In situ* DRIFTS and the corresponding mapping results of the transient reactions at 200 °C between 1000 ppm NH₃ and pre-adsorbed 1000 ppm NO + 5 vol% O_2 for 1 h as a function of time over (a, a') CuO-TiO₂ NTs and (b, b') CuO-TiO₂ NPs.

Table S1. The atomic fraction of N, S and Cu of CuO-TiO₂ NTs (s) and CuO-TiO₂ NPs (s) obtained from TEM-EDX mapping.

Sample	Atomic fraction of	Atomic fraction of	Atomic fraction of
	S (%)	N (%)	Cu (%)
CuO-TiO ₂ NTs (s)	3.63	8.19	4.24
CuO-TiO ₂ NPs (s)	5.70	8.39	4.99

Table S2. The textural properties of CuO-TiO₂ NTs, CuO-TiO₂ NPs, CuO-out-TiO₂ NTs, CuO-TiO₂ NTs (s), CuO-TiO₂ NPs (s) and CuO-out-TiO₂ NTs (s).

Catalysts	Specific surface area $(m^2 \cdot g^{-1})$	Pore volume ($cm^3 \cdot g^{-1}$)
CuO-TiO ₂ NTs	270.6	1.51
CuO-TiO ₂ NPs	68.0	0.39
CuO-out-TiO ₂ NTs	286.8	1.57
CuO-TiO ₂ NTs (s)	181.8	0.41
CuO-TiO ₂ NPs (s)	76.4	0.25
CuO-out-TiO ₂ NTs (s)	124.5	0.38

	Hydrogen	Hydrogen	Total hydrogen
Sample	consumption of Cu^+	consumption of Cu ²⁺	consumption
	reduction (%)	reduction (%)	(mmol/g)
CuO-TiO ₂ NT	s 67.2	32.8	3.62
CuO-TiO ₂ NP	s 49.2	50.8	2.07
CuO-out-TiO ₂	NTs 45.6	54.4	3.54

Table S3. The hydrogen consumption and the ratios of hydrogen consumption fromdifferent Cu reduction peaks of CuO-TiO2 NTs, CuO-TiO2 NPs and CuO-out-TiO2 NTs.

Table S4. The atomic fraction of N and S of CuO-TiO₂ NTs (s) and CuO-TiO₂ NPs (s) catalysts obtained from XPS measurement.

Sample	Atomic fraction of N (%)	Atomic fraction of S (%)
CuO-TiO ₂ NTs (s)	3.16	3.65
CuO-TiO ₂ NPs (s)	2.84	6.17

Note: The atomic fraction of S on the surface of CuO-TiO₂ NPs (s) was 6.17%, much higher than that (3.65%) of CuO-TiO₂ NTs (s), which indicated that there were more sulfates species yielded on the surface of CuO-TiO₂ NPs (s) than that of CuO-TiO₂ NTs (s). Meanwhile, the atomic fraction of S on the surface of CuO-TiO₂ NTs (s) was about the same as the atomic fraction of N (3.16%). It indicated that most of sulfates species deposited on the surface of CuO-TiO₂ NTs (s) in the form of (NH₄)₂SO₄/NH₄HSO₄ species rather than CuSO₄, which would decompose at lower temperature and express less poisoning effects on the catalyst activity. In contrast, the adsorption of SO₂ on the surface of CuO-TiO₂ NPs (s) generated more CuSO₄ species beyond that (NH₄)₂SO₄/NH₄HSO₄, resulting in serious active sites poisoning and activity loss.

Table S5. The mass fraction of S among CuO-TiO₂ NTs (s) and CuO-TiO₂ NPs (s) obtained from ICP measurement.

Sample	Mass fraction of S (%)
CuO-TiO ₂ NTs (s)	2.47
CuO-TiO ₂ NPs (s)	3.47

Table S6. The NH₃ desorption amount and the ratio of ammonia desorption on different acid sites of CuO-TiO₂ NTs, CuO-TiO₂ NPs, CuO-out-TiO₂ NTs, pure NTs and pure NPs.

Commu	Weak NH ₃ desorption	Medium-strong NH ₃	Total NH ₃ desorption
Sample	(0~200 °C, %)	desorption (>200 °C, %)	(µmol/g)
CuO-TiO ₂ N	Ts 38.3	61.7	14.39
CuO-TiO ₂ N	Ps 34.6	65.4	10.88
CuO-out-TiC	O ₂ NTs 50.0	50.0	8.66
Pure NTs	32.0	68.0	5.72
Pure NPs	28.8	71.2	6.21

References

- 1. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 2. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B*,1999, **59**, 1758.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 154104.
- 5. H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, *Phys. Rev. B*, 1976, **13**, 5188.
- 6. S. Dudarev, G. Botton, S. Savrasov, C. Humphreys and A. Sutton, Electronenergy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study, *Phys. Rev. B*, 1998, **57**, 1505.
- R. Zhang, C. Sun, J. Kou, H. Zhao, D. Wei and Y. Xing, Enhancing the Leaching of Chalcopyrite Using Acidithiobacillus ferrooxidans under the Induction of Surfactant Triton X-100, *Minerals*, 2019, 9, 11.
- H. Hu, S. Cai, H. Li, L. Huang, L. Shi and D. Zhang, In situ DRIFTs investigation of the low-temperature reaction mechanism over Mn-doped Co₃O₄ for the selective catalytic reduction of NO_x with NH₃, *J Phys. Chem. C*, 2015, 119, 22924-22933.
- L. Chen, Z. Si, X. Wu and D. Weng, DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NO_x reduction with NH₃ at low temperatures, *ACS Appl. Mater. Interfaces*, 2014, 6, 8134-8145.
- 10. K. Zha, S. Cai, H. Hu, H. Li, T. Yan, L. Shi and D. Zhang, In situ DRIFTs investigation of promotional effects of tungsten on MnO_x-CeO₂/meso-TiO₂ catalysts for NO_x reduction, *J Phys. Chem. C*, 2017, **12**, 25243-25254.
- Q. Zhang, J. Fan, P. Ning, Z. Song, X. Liu, L. Wang, J. Wang, H. Wang and K. Long, In situ DRIFTS investigation of NH₃-SCR reaction over CeO₂/zirconium phosphate catalyst, *Appl. Surf. Sci.*, 2018, **435**, 1037-1045.
- H. Liang, K. Gui and X. Zha, DRIFTS study of γFe₂O₃ nano-catalyst for lowtemperature selective catalytic reduction of NO_x with NH₃, *Can. J. Chem. Eng.*, 2018, **94**, 1668-1675.
- H. Hu, S. Cai, H. Li, L. Huang, L. Shi and D. Zhang, Mechanistic aspects of deNO_x processing over TiO₂ supported Co-Mn oxide catalysts: structureactivity relationships and in situ DRIFTs analysis, ACS Catal., 2015, 5, 6069-6077.