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SI Methods  

Materials. Unless stated otherwise, all reagents including alginate of a high 

polymerization degree (H Alginate; n ≈ 500) were purchased from Sigma-Aldrich (St. 

Louis, Missouri). Additionally, alginates of middle (M Alginate; n ≈ 50, M/G > 4) and 

low (L Alginate; n = 5; M/G > 4) polymerization degrees were purchased from Elicityl 

Biotech Company. 1-hydroxyphenazine (1-OHPHZ), phenazine-1-carboxylic acid 

(PCA) and phenazine-1-carboxamide (PCN) in oxidized forms were all purchased from 

TCI America. The most studied model protein of bovine serum albumin (BSA; MW ≈ 

66.5 kDa and pI ≈ 4.7) was obtained from Fluka (St. Louis, Missouri), and the typical 

supercoiled pBR322 DNA (4361 base pairs) was obtained from Takara Biomedical 

Technology (Beijing, China). All experimental solutions were prepared using ultrahigh 

purity water (18.2 MΩ·cm) obtained through a two-step purification treatment 

including a triple distillation (YaR, SZ-93, Shanghai, China) and deionization (Milli-Q, 

Billerica, MA).  

Preparation of Iron(Ⅲ) Phosphate Minerals and Reduced Phenazines. Amorphous 

iron(Ⅲ) phosphate (AmFe(Ⅲ)-P) with a solid Fe/P mole ratio of ≈ 11-3 was synthesized 

by mixing 150 mL iron(Ⅲ) chloride (0.2 M) with 150 mL phosphoric acid (0.3 M) 

followed by adjusting pH to 3. The surfactants CTAB (hexadecyl trimethyl ammonium 

bromide) of 1.5 % of the mass of iron power was dissolved in 100 mL water contained 

18.3 mL phosphoric acid (85%) and 5 g iron power. The solution was stirred at 60 ℃ 

until completely clarified followed by removing the insoluble black solid impurities. 

Next, H2O2 (82.5 mL, 5 %) was gradually added to the clear light green solution 

accompanied by occurrence of oxidation reaction at 70℃ with a constant pH 2 using 

ammonia water adjustment. The obtained solution was stirred until the formation of a 

white slurry under the optimal conditions of 4 h aging time and 60 min ultrasonic time.4 

Both AmFe(Ⅲ)-P and crystalline iron(Ⅲ) phosphate (CryFe(Ⅲ)-P) precipitates were 

filtered, washed with water and alcohol at least three times, respectively, to remove 

adsorbed iron and phosphate as much as possible and dried at 80 ℃ under vacuum for 

12 h to obtain the final products. Those products were characterized by both X-ray 
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diffraction (XRD, Bruker D8, Billerica, MA) and Raman spectroscopy (Horiba 

LabRAM HR800) (Figure S1).  

1-OHPHZ, PCA and PCN in their oxidized forms all were dissolved in high (100 mM 

KCl) or low (10 mM KCl) salt solutions, respectively, buffered with 10 mM (5 mM 

each) CH3C(O)ONH4-MOPS (3-(n-morpholino)propanesulfonic acid) to maintain 

constant pH yielding 100 or 200 mg/L PHZ-bearing solutions used for electrochemical 

experiments. The reduced form of each PHZ (H2PHZ) was obtained through the 

quantitative two-electron transfer (Figure S2) with a controlled potential bulk 

electrolysis in a buffer solution at pH 7. Complete PHZ reduction was confirmed by 

linear sweep voltammetry (LSV) before and after the bulk electrolysis of each PHZ 

using the working electrode for cyclic voltammetry. The experimental details can be 

seen in a previous study.5 In addition, H Alginate-bearing solutions with different 

concentrations of 100, 200 and 500 mg/L used for reduction dissolution were also 

prepared. The concentration of alginate and PHZ in natural soil systems have distinct 

variations in different geological environments or agricultural settings, whose ranges 

used in the present study frequently occurs in EPS-bearing soil microenvironments, 

especially in organics-rich soil. During electrochemical experiments, all solutions were 

deoxygenated and reactions were conducted under oxygen-free conditions with 

protection by nitrogen (N2).  

Batch Reduction Experiments. Unless specified otherwise, all batch reduction 

experiments were performed by adding 100 mg AmFe(Ⅲ)-P or CryFe(Ⅲ)-P into 15 mL 

of H2PHZ-, H Alginate- or (H2PHZ + H Alginate)-bearing buffer solutions with 

different pH values (4, 5, 7 and 8) and salt concentrations (high and low salt) at 25 ℃ 

under sterile and anoxic conditions with nitrogen (N2) protection throughout the 

reaction in vacuum glove box. The control assays were also conducted only in buffer 

solution without H2PHZ and H alginate to exclude the interference from adsorbed Fe/P 

and aqueous buffer solution. All reactions were initiated in the dark and immediately 

quenched after reaction for 30 min. Then, the reacted solutions were filtered through a 

0.22 µm filter and the residual solid iron(Ⅲ) phosphate was washed to collect the 
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filtrate containing dissolved Fe(Ⅱ), Fe(Ⅲ) and concomitantly released P. The obtained 

filtrates were then quickly centrifuged at 10000 r/min for 2 min using a 5810R bench 

freezing centrifuge (Eppendorf, Germany) to further remove the suspended iron(Ⅲ) 

phosphate and avoid the (photo)oxidation of reduced Fe(Ⅱ).  

Determination of Reductive Dissolution Content of Fe(Ⅱ). Prior to quantification of 

Fe(Ⅱ) production with ferrozine (FZ) method,6 the filtrates were adjusted to a neutral 

pH using a 0.1 M HCl or 0.1 M KOH stock solution, in which FZ can extremely rapidly 

and selectively react with Fe(Ⅱ) rather than Fe(Ⅲ)7, 8 by the formation of a stable purple 

complex, Fe(Ⅱ)FZ3, with a maximum absorbance at 562 nm.6, 9, 10 Then, the production 

of Fe(Ⅱ) was quantified using a UV spectrophotometer (UV1800ENG240, Japan) 

equipped with a 1 cm path length cell after 30-60 s of reaction time (the time for full 

color development)11 by adding 4 mL FZ (10 mM) solution into the collected filtrates, 

followed by dilution to a constant volume of 25 mL in colorimetric tube. Noticeably, 

the FZ concentration utilized in this study was sufficient for both free Fe(Ⅱ) and 

organic-complexed Fe(Ⅱ) quantifications,12 which resulted in negligible free Fe(Ⅱ), 

PHZ-Fe(Ⅱ) or H alginate-Fe(Ⅱ) complex even at high soil organic matter 

concentrations13, 14 and the reason for choosing the mass of 100 mg iron(Ⅲ) phosphate 

was that for the reductive dissolution of CryFe(Ⅲ)-P, Fe production were above the 

detection limit of FZ method. Moreover, quick introduction of FZ solution can 

completely outcompete Fe(Ⅱ) oxidation, which confirmed in a previous study.15 

Standing solution of Fe(Ⅱ) ranging from 0 to 5000 µg/L were prepared and the detection 

limit was 2.5 µg/L.16 Total Fe (FeT) content was quantified through the reduction of 

Fe(Ⅲ) in filtrates to Fe(Ⅱ) using hydroxylamine hydrochloride17and the Fe(Ⅲ) content 

in each aliquot was calculated from the difference between measured FeT and Fe(Ⅱ).  

One supplementary experiment was performed to explore the role of organic-

complexed Fe(Ⅲ) in enhancing solid-phase Fe(Ⅲ) reduction by H2PHZ. The prepared 

H alginate-Fe(Ⅲ) complex (1 mM) and free Fe(Ⅲ) ion (1 mM) were added into the 

H2PHZ-bearing buffer solutions (200 mg/L; pH 5; high salt), respectively. The Fe(Ⅱ) 

production from free or H alginate-complexed Fe(Ⅲ) reduction by H2PHZ was 
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determined by FZ method. Here, it should be noted that H alginate concentration was 

slightly higher than that of Fe(Ⅲ) ion to ensure the complete complexation of Fe(Ⅲ) 

by H alginate. Another possible reaction in the system is the solid-phase Fe(Ⅲ) in 

iron(Ⅲ) phosphate reduction by H alginate-Fe(Ⅱ) complex acting as electron shuttle 

analogues. To verify this possibility, the oxygen-free H alginate-Fe(Ⅱ) complex (1 mM) 

and free Fe(Ⅱ) ion (1 mM) were prepared in buffer solutions (pH 5; high salt) followed 

by the addition of 100 mg iron(Ⅲ) phosphates. The Fe(Ⅲ) production from free or H 

alginate-complexed Fe(Ⅱ) oxidization by solid-phase Fe(Ⅲ) reduction was determined 

from the difference as measured FeT and Fe(Ⅱ). Here, it should be noted that H alginate 

concentration was slightly lower than that of Fe(Ⅱ) ion to avoid interference of excess 

H alginate dissolution for ion(Ⅲ) phosphates.  

Determination of P Production Content with Fe(Ⅲ) Reduction. Additionally, the 

released P content accompanied by reductive dissolution of iron(Ⅲ) phosphates was 

quantified by a molybdenum blue staining method.18 a. Preparations of Color Reagents. 

Reagent A: sulfuric acid (5 N). Dilute 70 ml concentrated sulfuric acid (95-98%, GR) 

to 500 ml. Reagent B: ascorbic acid (0.1 M). Dissolve 1.32 g of ascorbic acid (MW 

176.12, AR) in 75 ml of water. Because of easily oxidization, the solution should be 

prepared without light. Reagent C: ammonium molybdate (4 %). Dissolve 20 g 

ammonium molybdate (MW 1235.86, AR) in water and dilute to 500 ml. And store the 

solution in a brown bottle. Reagent D: potassium antimony tartrate (1 mg Sb/ml). 

Dissolve 0.2743 g of potassium antimony tartrate (MW 333.93, CP) in 100 ml of water. 

Reagent E: mixed reagent. The color reagent was prepared by mixing thoroughly 125 

ml of 5 N sulfuric acid, 37.5 ml of ammonium molybdate, 75 ml of ascorbic acid and 

12.5 ml of potassium antimony tartrate solution. b. Determination of P Standard Curve. 

Accurately weigh 0.4390 g of potassium dihydrogen phosphate (KH2PO4, Sigma-

Aldrich) dried in an oven at 80 ℃ for 2 h. Dissolve it with water, add 5 ml of 

concentrated sulfuric acid and water to 1000 ml constant volume. Finally, the standard 

reserve solution containing 100 mg P/L was obtained. A series of standard solutions 

containing 0.0, 0.2, 0.6, 1.0, 2.0, 3.0, 4.0, 5.0 mg P/L were prepared by diluting the 
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standard reserve solution. All standard solutions were adjusted to neutral conditions 

using 2, 4-dinitrophenol indicator (MW 184.11, AR) by dropping 0.1 M HCl or 0.1 M 

KOH stock solution, respectively. Then, add 4 ml of color reagent and dilute to 25 ml 

in colorimetric tube. After 30 min at room temperature, the absorbance was measured 

by using UV spectrophotometer (UV1800ENG240, SOFT, SHIMADZU, Japan) at λ = 

880 nm.  

c. Orthophosphate Determination. Before the quantification of P content, the blank 

measurement only with buffer solution was performed to eliminate the interference of 

adsorbed P and only minor impurities of P existed on iron(Ⅲ) phosphates were detected 

within error. Thus, the concentrations of released P accompanied by Fe(Ⅲ) in iron(Ⅲ) 

phosphates reduction were determined after treatment with molybdenum blue color 

reagents according to the obtained standard curve. All experiments were performed in 

at least three replicates at 25 ℃.  

In Situ AFM Imaging for Surface Dissolution of Iron(Ⅲ) Phosphates. In situ 

surface dissolution experiments of AmFe(Ⅲ)-P and CryFe(Ⅲ)-P was examined with an 

AFM instrument (Nanoscope Multimode 8, Bruker) equipped with a 100 µL liquid cell 

allowed for various biogeochemical reactions. AFM images were obtained using 

commercially available Si3N4 probes (Bruker ScanAsyst Fluid+, k = 0.7 N/m and tip 

radius 2 nm) under ScanAsyst in Fluid model at a scan rate of 2.0 Hz for 2 × 2 µm2 at 

25 ℃. Prior to the dissolution experiments, AmFe(Ⅲ)-P or CryFe(Ⅲ)-P minerals were 

pressed at 15-20 MPa for 5-10 min to form smooth substrates. The newly-prepared 

reaction solutions with redox-active H2PHZ were flowed through the liquid cell by a 

high-precision syringe pump (Razel Scientific Instruments model R100-E) at a constant 

rate of 10 mL/h to ensure steady-state kinetic dissolution conditions rather than 

diffusion-controlled dissolution conditions during a period of dissolution 

experiments.19 The determination of dissolution rates in different aqueous solutions 

were performed from surface dissolution volume calculated by the Nanoscope Analysis 

software with Bearing Analysis model. The obtained dissolution rates were all shown 

as mean values ± standard deviation of three independent sets. In addition, for reductive 
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dissolution-reprecipitation experiment, the 200 mg/L PCA-bearing solution with 2 mM 

KH2PO4 was pumped into the AFM system for in situ observation of the formation of 

amorphous Fe(Ⅱ)-P (AmFe(Ⅱ)-P) particles on AmFe(Ⅲ)-P surface.  

XRD, XPS and Raman Spectroscopy Experiments. The phase identification of 

synthesized AmFe(Ⅲ)-P and CryFe(Ⅲ)-P mineral was conducted by X-ray diffraction 

(XRD) with the scanning speed of 4°/min from 5-90° and Raman spectroscopy (Horiba 

LabRAM HR800) by a laser 532 nm with 50 µm confocal hole and a 600 lines/mm 

grating under a 50 ⅹ microscope objective (Olympus, MLPlanTL N). The spectra were 

collected twice and analyzed with the LabSpec 6 software. In situ Raman spectroscopy 

was also used to characterize the newly-formed particles on AmFe(Ⅲ)-P surface. These 

newly-formed particles were ultrasonically isolated from iron(Ⅲ) phosphate surfaces 

after washing for further characterization of phase and chemical valence with XRD and 

X-ray Photoelectron Spectroscopy (XPS), respectively, after washing with water and 

alcohol multiple times. The obtained XPS data were analyzed by the Thermal 

Advantage software with smart background methods for baseline correction and 

Gaussian function for peak fitting. All measurements were performed for least three 

times to ensure the reproducibility of results.  

Kelvin Potential Force Microscopy (KPFM). Samples used for KPFM experiment 

were collected from AmFe(Ⅲ)-P surface before and after treatment with a binary 

combination of 100 mg/L 1-OHPHZ and 100 mg/L alginate with different 

concentrations and polymerization degrees. The contact potential difference (VCPD = 

Vsample – Vtip) between the sample surface and a conductive AFM tip (MESP-V2, k = 

3.0 N/m and tip radius 35 nm with a resonance frequency of 75 kHz) was determined 

by an AFM-based KPFM technique. To determine the surface potential of AFM tips, 

we first used a gold surface (PFKPEM-SMPL, Bruker) with a defined gold work 

function (ΦAu) of 5.10 eV20 as a reference to calibrate the work function of AFM tips 

(Φtip), which can be obtained by the following equation: 

𝑉CPD =
1

𝑒
 (𝛷tip − 𝛷Au)  (1) 

In the KPFM model, the sample surface topography and contact potential could be 
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obtained simultaneously and independently through a two-pass procedure.21 In the first 

pass, the topographic image of sample surface was captured in AFM-based Tapping 

mode, and then the AC (VAC) and DC (VDC) voltage signals both were applied to the 

probe tips for nullifying the electrostatic interaction through a feedback loop using the 

following equation: 

𝑉tip = Δ𝑉DC + 𝑉AC sin(𝜔𝑡) (2) 

, where VAC is induced by electrostatic interaction between probe tip and sample surface 

arising from a cantilever oscillation with an oscillating electric force on the cantilever 

at the resonant frequency of ω while lifting tips above sample surface. At the same time, 

we noted that in the lift mode, the cantilever vibration occurred with a detectable 

amplitude and moreover, the feedback loop adjusted the VDC difference between probe 

tips and sample surfaces to maintain the physical oscillation amplitude of cantilever at 

zero (ΔVDC = 0).22 As a result, the cantilever oscillation and the electric force applied 

onto cantilever were disappeared simultaneously.22 And in this way, VDC applied to 

probe tip was equal to VCPD
21-23 and was recorded through constructing a voltage map 

of sample surface. Considering that the drift of sample surface potential, the sample 

surface potential should be collected after each 30 min scanning time to ensure data 

stability and accuracy. The surface potential was quantitatively determined in at least 

three independence-treated samples and a minimum of three different locations of each 

treatment. All values derived from VCPD were shown as mean value ± standard deviation.  
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Table S1. Reductive dissolution rate ( 10
6
 nm

3
 per 4 m

 2
·min) of AmFe(Ⅲ)-P and 

CryFe(Ⅲ)-P by H2PHZ (200 mg/L 1-OHPHZ, PCA or PCN) in a solution condition of 

pH 5 and high salt.  

Fe(Ⅲ)-P
Dissolution rate ( 106 nm3 per 4 μm2·min)

1-OHPHZ PCA PCN

Amorphous 0.48 ± 0.05 0.31 ± 0.03 0.19 ± 0.01

Crystalline 0.27 ± 0.02 0.07 ± 0.01 0.04 ± 0.005
 

Table S2. Reductive dissolution rate ( 10
6
 nm

3
 per 4 m

 2
·min) of AmFe(Ⅲ)-P and 

CryFe(Ⅲ)-P by PCA in a high salt solution condition with different pH values (4, 5, 7 

and 8). 

Fe(Ⅲ)-P

Dissolution rate ( 106 nm3 per 4 μm2·min)

PCA in different pH values (High salt)

4 5 7 8

Amorphous 0.43 ± 0.06 0.31 ± 0.03 0.17 ± 0.02 0.10 ± 0.01

Crystalline 0.15 ± 0.02 0.07 ± 0.01 0.05 ± 0.008 0.03 ± 0.002
 

Table S3. Reductive dissolution rate ( 10
6
 nm

3
 per 4 m

 2
·min) of AmFe(Ⅲ)-P and 

CryFe(Ⅲ)-P by PCA in a low salt solution condition with different pH values (4, 5, 7 

and 8). 

Fe(Ⅲ)-P

Dissolution rate ( 106 nm3 per 4 μm2·min)

PCA in different pH values (Low salt)

4 5 7 8

Amorphous 0.28 ± 0.04 0.21 ± 0.02 0.07 ± 0.009 0.06 ± 0.005

Crystalline 0.10 ± 0.008 0.04 ± 0.005 0.03 ± 0.004 0.01 ± 0.002
 

 

 



S10 

 

A B

250 500 750 1000 1250 1500

CryFe(Ⅲ)-P 

FWHM = 172 cm-1

Raman shift (cm-1)

AmFe(Ⅲ)-P R
e
la

ti
v
e
 i
n
te

n
s
it
y
 (

a
.u

.)

FWHM = 53 cm-1

999 cm-1

10 20 30 40 50 60 70 80

In
te

n
s
it
y
 (

a
.u

.)

2q (degree)

 CryFe(Ⅲ)-P

 AmFe(Ⅲ)-P

         PDF#76-0451

 

Figure S1. Identifications of synthesized AmFe(Ⅲ)-P and CryFe(Ⅲ)-P by (A) XRD 

and (B) Raman spectroscopy, respectively.  
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Figure S2. Cyclic voltammetry (CV) results of (A) 1-OHPHZ, (B) PCA and (C) PCN 

collectively exhibit single oxidation and reduction peaks in solution conditions (pH 7; 

high salt) buffered with 10 mM CH3C(O)ONH4-MOPS (5 mM each). 
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Figure S3. Characteristic UV-visible spectra for the oxidized and reduced couples of 

(A) 1-OHPHZ, (B) PCA and (C) PCN in a buffer solution with pH 7 and high salt. 
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Figure S4. CV curves of PCA before and after treatment with (A) 5 g/L and (B) 500 

mg/L H alginate at scan rate of 10 mV/s in a buffer solution with pH 7 and high salt. 

The open circuit potential (OCP) values of reduced PCA before and after treatment with 

H alginate are shown in (A) and (B). 
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Figure S5. AFM height images of surface dissolution of AmFe(Ⅲ)-P at (A1) 0 min and 

(B1) 30 min, and corresponding peak force error images at (A2) 0 min and (B2) 30 min, 

respectively. Height profiles of AmFe(Ⅲ)-P mineral surface along the white lines are 

shown in (C).  
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Figure S6. AFM peak force error images of surface dissolution of AmFe(Ⅲ)-P with 

time after exposure to a high salt buffer solution without H2PHZ at (A1-A2) pH 4, (B1-

B2) pH 5, (C1-C2) pH 7, (D1-D2) pH 8, respectively. Height profiles of AmFe(Ⅲ)-P 

surface along the white lines in both 0 and 30 min are shown in (A3-D3), illustrated the 

unchanged surface morphologies at the nanoscale during the process.  
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Figure S7. In situ AFM height images of a representative reductive dissolution event 

on the surfaces of (A1-B1) AmFe(Ⅲ)-P and (C1) CryFe(Ⅲ)-P minerals and 

corresponding deflection images on the surfaces of (A2-B2) AmFe(Ⅲ)-P and (C2) 

CryFe(Ⅲ)-P minerals with time after exposure to a 200 mg/L PCA-bearing buffer 

solution (pH 5; high salt). Height profiles of etch pits along the white lines 1 and 2 are 

shown in (D), illustrating the deeper etch pit depth on AmFe(Ⅲ)-P surface than that on 

CryFe(Ⅲ)-P surface after treatment with the same reaction solution and time. The 

reductive dissolution volume increases linearly with time after exposure to (E) different 

H2PHZ-bearing buffer solutions (200 mg/L; pH 5; high salt) on the surfaces of 
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AmFe(Ⅲ)-P and CryFe(Ⅲ)-P; or after exposure to a 200 mg/L PCA-bearing buffer 

solution with high salt on surfaces of (F) AmFe(Ⅲ)-P and (G) CryFe(Ⅲ)-P, respectively, 

at four pH values (4, 5, 7 and 8); or after exposure to a 200 mg/L PCA-bearing buffer 

solution with pH 5 on AmFe(Ⅲ)-P and CryFe(Ⅲ)-P surfaces at (H) different salt 

concentrations (high salt; low salt), respectively.  
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Figure S8. In situ AFM height images of a representative surface morphology of 

AmFe(Ⅲ)-P and corresponding deflection images of AmFe(Ⅲ)-P with time after 

exposure to (A2-B2) a 200 mg/L eDNA-bearing or (D1-E1) a 200 mg/L BSA-bearing 

solution (pH 5; high salt), respectively. Height profiles of etch pits along the white lines 

1 and 2 are shown in (C) and (F), illustrating the unchanged height of morphologies on 

AmFe(Ⅲ)-P surface after treatment with the same reaction solution and time.  
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Figure S9. The dissolution volume increases linearly with time; slopes of lines and the 

dissolution rates follow the order: H2PHZ + H alginate > H alginate > H2PHZ whether 

on the surfaces of (A-C) AmFe(Ⅲ)-P or (D-F) CryFe(Ⅲ)-P mineral with respect to 

solution conditions of pH 5 and high salt.  
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Figure S10. The dissolution volume increases linearly with time after exposure to a 

100 mg/L 1-OHPHZ-bearing buffer solution (pH 5; high salt) with (A-B) different 

concentrations of H alginate (100, 200 and 500 mg/L) or (C-D) different degrees of 

polymerization of 100 mg/L alginate (H, M and L) on surfaces of AmFe(Ⅲ)-P and 

CryFe(Ⅲ)-P, respectively.  
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Figure S11. The dissolution volume increases linearly with time after exposure to a 200 

mg/L 1-OHPHZ-bearing buffer solution on AmFe(Ⅲ)-P and CryFe(Ⅲ)-P surfaces at 

(A, D) four pH values (4, 5, 7 and 8) with high salt and (B, E) different salt 

concentrations (high salt, low salt) with pH 5, respectively. Significant analyses of 

dissolution rates after exposure to a 200 mg/L 1-OHPHZ-bearing buffer solution at four 

pH values (4, 5, 7 and 8) with different salt concentrations (high and low salt) in the 

presence of (C) AmFe(Ⅲ)-P and (F) CryFe(Ⅲ)-P of 100 mg, respectively. The error 

bars represent standard deviations taken from independent triplicate experiments. Two 

asterisks indicate significant differences at P < 0.01, which was analyzed by SPSS 

software.  
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Figure S12. Total Fe and P production in a 200 mg/L 1-OHPHZ-bearing buffer solution 

at four pH values (4, 5, 7 and 8) with different salt concentrations (high salt, low salt) 

in the presence of 100 mg (A-B) CryFe(Ⅲ)-P or (C) AmFe(Ⅲ)-P, respectively. The 

error bars represent standard deviations taken from independent triplicate experiments. 

Two asterisks indicate significant differences at P < 0.01, which was analyzed by SPSS 

software.  
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