## Ligand removal energetics control CO<sub>2</sub> electroreduction selectivity on

## atomically precise, ligated alloy nanoclusters

Malena Rybacki<sup>®</sup>, Anantha Venkataraman Nagarajan<sup>®</sup>, Giannis Mpourmpakis\*

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

\*Corresponding Author email: <a href="mailto:gmpourmp@pitt.edu">gmpourmp@pitt.edu</a>



**Figure S1**. Structures of all optimized TPNCs in their (a) fully protected state and (b) upon -R removal. Dopants indicated by color.  $Au_{25}$  has the same optimized structure in the neutral state and the negatively charged state. Hypothetical systems are labeled with \*. Red circle indicates site of -R removal.



**Figure S2.** (a) EA and (b) IP of all TPNCs (including Au<sub>25</sub> in its negative (-1) charge state) in their fully protected state (red bars) and upon -R removal (blue bars). Hypothetical systems are labeled with \*.



**Figure S3.** HOMO and LUMO of (a) experimentally determined TPNCs and (b) hypothetical TPNCs in their fully protected state. Hypothetical systems are labeled with \*.



**Figure S4.** HOMO and LUMO of (a) experimentally determined TPNCs and (b) hypothetical TPNCs upon - R removal. Hypothetical systems are labeled with \*.



**Figure S5.** Difference in limiting potentials ( $\Delta U_L$ ) of  $CO_2R$  vs. HER on the S active sites of the different TPNCs. Positive values reflect selectivity towards  $CO_{(g)}$  formation while negative values reflect selectivity towards  $H_{2(g)}$  formation. Dashed line separates TPNCs selective towards  $CO_{(g)}$  (left) or  $H_{2(g)}$  formation (right). \*CO formation is the limiting potential on TPNCs with a grey star.



**Figure S6.** \*COOH formation energy on S active sites of  $Pd_{(C)}Au_{24}$  when it is formed via \*H bound on the S site (blue line) or via proton coupled electron transfer (H<sup>+</sup> + e<sup>-</sup>, red line)

| TPNC                                  | Bader charge of S active site in | Bader charge of S active site in - |
|---------------------------------------|----------------------------------|------------------------------------|
|                                       | fully protected TPNC             | R removed TPNC                     |
| Au <sub>25</sub>                      | -0.05                            | -0.30                              |
| Cd <sub>(OC)</sub> Au <sub>24</sub>   | -0.07                            | -0.51                              |
| Cd <sub>(S)</sub> Au <sub>24</sub> *  | -0.22                            | -0.53                              |
| Cd <sub>(C)</sub> Au <sub>24</sub> *  | -0.07                            | -0.30                              |
| Hg <sub>(OC)</sub> Au <sub>24</sub> * | -0.09                            | -0.41                              |
| Hg <sub>(S)</sub> Au <sub>24</sub>    | -0.07                            | -0.36                              |
| Hg <sub>(C)</sub> Au <sub>24</sub> *  | -0.07                            | -0.30                              |
| Pt <sub>(OC)</sub> Au <sub>24</sub> * | -0.03                            | -0.25                              |
| Pt <sub>(S)</sub> Au <sub>24</sub> *  | -0.05                            | -0.22                              |
| Pt <sub>(C)</sub> Au <sub>24</sub>    | -0.04                            | -0.28                              |
| Pd <sub>(Oc)</sub> Au <sub>24</sub> * | -0.10                            | -0.30                              |
| Pd <sub>(S)</sub> Au <sub>24</sub> *  | -0.08                            | -0.27                              |
| Pd <sub>(C)</sub> Au <sub>24</sub>    | -0.03                            | -0.25                              |

**Table S1**. Bader charge comparison of fractional charge on S active site on the fully protected TPNC vs -R

 removed TPNC. More negative number implies higher electron density on the S active site.

| TPNC                                 | *CO formation (eV) | Difference in limiting          |
|--------------------------------------|--------------------|---------------------------------|
|                                      |                    | potentials ( $\Delta U_{L}$ ev) |
| Hg <sub>(C)</sub> Au <sub>24</sub> * | 0.36               | 0.46                            |
| Cd <sub>(C)</sub> Au <sub>24</sub> * | 0.28               | 0.51                            |
| Pt <sub>(S)</sub> Au <sub>24</sub> * | 0.19               | 0.10                            |

**Table S2**. \*CO formation energies along with difference in limiting potentials ( $\Delta U_L$ ) for TPNCs with \*CO formation as the limiting potential. In the above three cases,  $\Delta U_L = G$  (\*CO formation) – G (\*H formation). In all other cases,  $\Delta U_L = G$  (\*COOH formation) – G (\*H formation)