Supporting Information for

Rice Exposure to Silver Nanoparticles in a Life Cycle Study: Biphasic Dose-Responses on Grain Metabolomic Profile, Yield, and Soil Bacteria

Xin Yan¹, Zhengyan Pan², Si Chen¹, Nibin Shi¹, Tonghao Bai¹, Liqiang Dong²,

Dongmei Zhou¹, Jason C. White³, Lijuan Zhao¹*

¹State Key Laboratory of Pollution Control and Resource Reuse, School of
Environment, Nanjing University, Nanjing 210023, China

²Liaoning Rice Research Institute, Shenyang, 110101, China

³The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut

06504, United States

‡Xin Yan and Zhengyan Pan contribute equally to this work

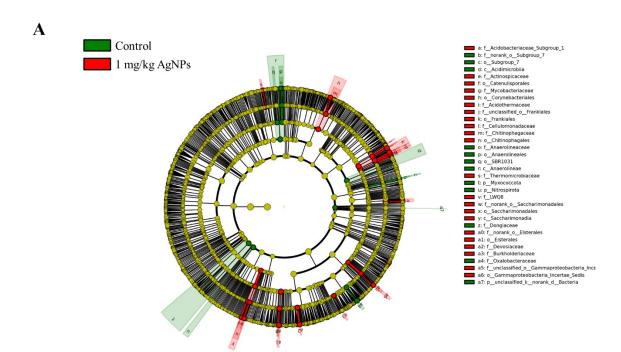
*Corresponding author. Email address: <u>ljzhao@nju.edu.cn</u>

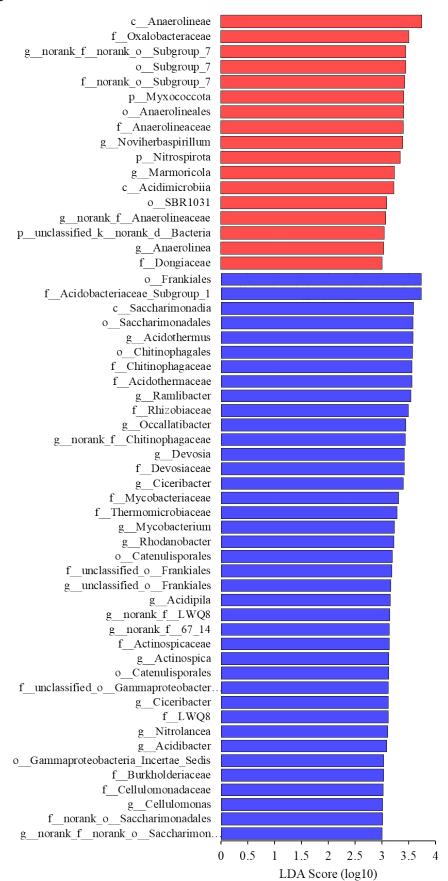
Page S3-4 Table S1 to S2 Page S5-8 Figure S1 to S2

Table S1. Ag content in rice tissues (mg/kg dry weight)

	Control	1 mg/kg AgNPs	10 mg/kg AgNPs
Polished grain	1.38 ± 0.32	0.98 ± 0.10	1.10 ± 0.14
Bran	1.16 ± 0.22	1.16 ± 0.23	3.86 ± 1.83
Rice hull	1.50 ± 0.46	$3.12 \pm 1.13*$	$4.70 \pm 1.75^*$
Leaf	1.55 ± 0.50	1.78 ± 0.61	1.86 ± 0.31
Stem	0.67 ± 0.19	$1.26 \pm 0.19*$	2.98 ± 1.16 *
Root	5.68 ± 0.78	$14.40 \pm 4.31^*$	$29.24 \pm 14.77*$

All data are averages of 4 replicates. *represent statistical difference at p < 0.05


Table S2. Mineral nutrient content in polished rice grain (mg/kg dry weight)


	Control	1 mg/kg AgNPs	10 mg/kg AgNPs
K	208.5 ± 4.18	169.0 ± 33.17	168.1 ± 8.64*
Ca	219.6 ± 32.89	193.9 ± 68.82	199.9 ± 41.90
Mg	262.6 ± 57.43	242.1 ± 50.76	279.0 ± 9.10
Fe	77.04 ± 11.84	$58.48 \pm 8.72*$	64.40 ± 12.27
Zn	15.69 ± 3.11	11.50 ± 3.11	11.86 ± 2.84
Mn	9.49 ± 0.94	10.72 ± 3.35	9.62 ± 1.50
Cu	7.90 ± 1.69	6.28 ± 0.75	7.23 ± 0.14
Mo	1.07 ± 0.20	$0.73 \pm 0.11^*$	0.91 ± 0.22

All data are averages of 4 replicates. *represent statistical difference at p<0.05

VIP Overlap		T-test
Ethylene glycol Glutaric acid Hydrocinnamic acid L-arabitol Linolenic acid Sorbitol 1-heptanol 1-kestose 3-hydroxymethylglutaric acid D-arabinose Gluconic acid Glutathione Glycocyamine L-asparagine L-tryptophan L-tyrosine Salicylaldehyde Udp-glucuronic acid	1,2,4-benzenetriol 2,4-hexadienedioic acid 3-deoxyhexitol 4-(4-hydroxyphenyl)-4-methyl-2-pentanone Adipic acid Behenic acid Benzylalcohol Cellobiose Citric acid L-cysteine-glycine Metharbital Naproxen Ribonic acid Thymine Beta-hydroxymyristic acid Citraconic acid Citrazinic D-myo-inositol 4-phosphate Itaconic acid L-proline Maleic acid Palatinitol	2-monoolein 3-fluoro-2-hydroxyprop-2-enoate Arachidic acid Dodecanol Glycolic acid Guanosine Isocitric acid Isomaltose Lauric acid Octanol Quinic acid Terephthalic acid 3,4-dihydroxycinnamic acid Chlorogenic acid D-mannose Fumaric acid Phenylalanine Sophorose Uracil

Figure S1. Up- and Down- regulated metabolites upon exposure to 1 mg/kg AgNPs. Red and green represent up- and down- regulation of metabolites respectively. The results are the combination of non-variate t-test analysis (p<0.05) and top 40 discriminant metabolites screened by VIP score from PLS-DA model.

Figure S2. (**A**) LEfSe analysisat multiple taxonomic levels indicates the taxonomic groups with significant differences in abundance between control and 1 mg/kg AgNPs. Each ring of cladogram represents a taxonomic level, with phylum, class, order, family and genus emanating from inside to the outside. (**B**) LDA score shows taxa enriched in control (red) and 1mg/kg AgNPs (blue) with LDA score>3 and significance of p<0.05 determined by Wilcoxon signed-rank test.