Supporting Information

Detection and Detoxification of Imidacloprid in food sample through Ionic Liquid

stabilized CuNi alloy nanoparticle decorated Multiwall Carbon Nanotubes

Manish Kumar^a, Navneet Kaur^{*, b} and Narinder Singh^{*, a} * Corresponding authors a Department of Chemistry, Indian Institute of Technology (IIT Ropar), Rupnagar, Punjab 140001, India E-mail: <u>nsingh@iitrpr.ac.in</u> Tel: +91-1881242176 b Department of Chemistry, Panjab University, Chandigarh 160014, India

Table of Content:

Scheme S-1: Schematic Diagram showing synthesis of IL.

Scheme S-2: Schematic Diagram showing three possible stabilization modes of IL with CuNi Nanoparticles and interaction of CuNi alloy nanoparticle with MWCNTs by an ionic liquid.

Figure S1: HRMS spectrum of Ionic liquid (IL)

Figure S2: ¹H-NMR spectrum of Ionic liquid (IL)

Figure S3: ¹³C-NMR spectrum of Ionic liquid (IL)

Figure S4: (A) Atomic Force Microscopic image of CuNi/IL alloy nanoparticles.

Figure S4: (B) The histogram of average size of CuNi/IL alloy nanoparticles calculated using Gwydion software.

Figure S5: (A) Histogram of average size of MWCNTs and (B) CuNi/IL@MWCNTs nanocomposite calculated using Gwydion software from AFM images.

Figure S6: (A) Cyclic voltammetry response of CuNi/IL@MWCNTs before and after activation for 60 cycles in 0.1M PBS at 100mVs-1 scan rate.

Figure S6: (B) CV response of GCE, CuNi/IL, CuNi/IL@MWCNTs towards IMD sensing in 0.1M PBS at 100mVs-1 scan rate.

Figure S7: Cyclic voltammetry response of CuNi/IL@MWCNTs towards IMD sensing in different pH (3to11) in 0.1M PBS at 100mVs-1 scan rate.

Figure S8: DPV response of CuNi/IL@MWCNTs (A) anions; (B) polysaccharides; (C) Vitamins; (D) Bar graph showing change in current response of CuNi/IL@MWCNTs towards IMD in presence of nitroaromatic compounds.

Figure S9: DPV response of CuNi/IL@MWCNTs towards IMD sensing (A) in rice samples; (B) in corn samples.

Figure S10: MS data of IMD in presence of (A) NaBH₄ (B) CuNi/IL@MWCNTs with NaBH₄

Figure S11: Reusability of CuNi/IL@MWCNTs for degradation of IMD after 5 cycles.

Figure S-12: LC-MS chromatograms: (i) pure IMD, (ii) Intermediate during reduction, (iii) after complete reduction;

Figure S-13: EDS spectrum of CuNi/IL@MWCNTs nanocomposite.

Table S1: Comparison of the merits of methods for detection and degradation of Imidacloprid.

Scheme S1: Schematic Diagram showing synthesis of IL.

۰

Scheme-2: Three possible stabilization modes of lonic liquid with alloy nanoparticles

Interaction of CuNi alloy NPs with MWCNTs by an IL linker

Elemental Composition Report

Single Mass Analysis

Page 1

Tolerance = 300.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5											
Monoisotopic Mass, Even Electron Ions 8 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 6-6 H: 0-300 N: 1-4 O: 0-1											
Sample Name : 201021_MKR-3AF			IITRPR						XEVO G2-XS QTOF		
Test Name 201021_MKR-3/ 1001!	: AF 15 (0.328) 55.0858		N + NH NH2					l ₂	1: TOF MS ES+ 5.15e+007		
% 141 057	5		Ionic Liquid (IL)								
138.0581 0	277.1350 200 300		389.100 400	8 	513.1512 500	13.1512 625.1168 500 600		³ 765.1830, ^{827.1023} 861,1352 700 800 9		1001.2050 m/z 1000	
Minimum: Maximum:		2.0	300.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
155.0858	155.0933	-7.5	-48.4	3.5	1914.6	n/a	n/a	C6 H11 N4 O			

Figure S1: HRMS spectrum of Ionic liquid (IL)

Calculated mass $(M^+) = 155.0927)$ and Observed Mass $(M^+) = 155.0858$

Figure S2: ¹H-NMR spectrum of Ionic liquid (IL); 1H NMR (400MHz, DMSO-d6) – δ 10.73 (s, 1H, NH), 9.21-9.15 (s, 1H, C2H-Im), 7.33,7.70 (d, 2H, C4H, C5H-Im), 5.38-5.20 (s, 2H, CH2CO), 3.88 (s, 3H, CH3-N).

Figure S3: ¹³C-NMR spectrum of Ionic liquid (IL);

¹³C NMR (100MHz, DMSO-d₆)- δ 167.32, 166.88, 137.67, 137.53, 123.92, 123.51, 123.00, 122.73, 50.22, 49.91.

Figure S4(A): Atomic Force Microscopic image showing the morphology of CuNi/IL alloy nanoparticles and (B) histogram of average size of CuNi/IL alloy nanoparticles calculated using Gwydion software.

Figure S5: (A) Histogram of average size of MWCNTs and (B) CuNi/IL@MWCNTs nanocomposite calculated using Gwydion software from AFM images.

Figure S6: (A) Cyclic voltammetry response of CuNi/IL@MWCNTs before and after activation for 60 cycles in 0.1M PBS at 100mVs⁻¹ scan rate. (B) CV response of GCE, CuNi/IL, CuNi/IL@MWCNTs towards IMD sensing in 0.1M PBS at 100mVs⁻¹ scan rate.

Figure S7: Cyclic voltammetry response of CuNi/IL@MWCNTs towards IMD sensing in different pH (3to11) in 0.1M PBS at 100mVs⁻¹ scan rate.

Figure S8: DPV response of CuNi/IL@MWCNTs (A) anions; (B) polysaccharides; (C) Vitamins; (D) Bar graph showing change in current response of CuNi/IL@MWCNTs towards IMD in presence of nitroaromatic compounds.

Figure S9: DPV response of CuNi/IL@MWCNTs towards IMD sensing (A) in rice samples; (B) in corn samples.

Figure S10: MS data of IMD in presence of (A) NaBH₄ (B) CuNi/IL@MWCNTs with NaBH₄.

Figure S11: Reusability of CuNi/IL@MWCNTs for degradation of IMD after 5 cycles.

Figure S-12: LC-MS chromatograms: (i) pure IMD, (ii) Intermediate during reduction, (iii) after complete reduction;

Figure S-13: EDS spectrum of CuNi/IL@MWCNTs nanocomposite.

S.	Material Used	Method	Quantificatio	catho	Linea	LOD and	Type of	Ref.
No			n and	dic	r	degradat	Real	
•			Degradation	peak	range	ion %age	Sample	
				curre				
				nt.				
1.	h-MoO ₃ HRs/GCE	Electrochemica	Quantificatio	Ipc =4	38.7–	5.99µM	Tomato,	1
		1	n	.8 µA	132		Potato	
		(Differential			μM			
		pulse						
		voltammetry)						
2.	fMWCNT-	Electrochemica	Quantificatio	Ipc =	0.2-	37.4nM	Tap water,	2
	Nafion®0.5%/GCE	1	n	-1.21	1.7		melon, and	
		(Square-wave		μA	μΜ		shrimp	
		voltammetric)						
3.	Ni/carbon	Electrochemica	Degradation		NA	87.8%	NA	3
		1 impedance						
		spectroscopy						
4.	poly(carbazole)/che	Electrochemica	Quantificatio	Ipc= -	3 μΜ	0.44 mM	NA	4
	mically reduced	1	n	1.31µ	to 10			
	graphene oxide	(Differential		A	μΜ			
		pulse						
		voltammetry)						
5.	N/Cu-HPC/GCE	Electrochemica	Quantificatio	Ipc= -	0.5μ	0.026	Rice	5
		l (Cyclic	n	69.1µ	M to	mM		
		Voltammetry		A	60			
					μΜ			
6.	Graphene quantum	Colorimetric	Quantificatio	NA	0.01-	0.007	Cucumber	6
	dot/Au		n		1 ppm	ppm.		
7.	Iron Activated	PS oxidation	Degradation	NA	NA	80% in	Water	7
	Sodium persulfate					30 mins	samples	
8.	Chlorine doped Bi-	Photocatalysis	Degradation	NA	NA	90% in	Water	8
	BiO2-x					12 hr		
9.	Ag-Deposited	Photocatalysis	Degradation	NA	NA	$t_{1/2} = 31$	NA	9
	Titanate Nanotubes					mins		
10.	3D-MoO2-PBC	Electro-Fenton	Degradation	NA	NA	100% in	NA	10
		System				90mins		
11.	CuNi/IL@MWCN	Electrochemic	Quantificatio	118.5	0.012	11nM	Corn and	This

Table S1: Comparison of the merits of methods for detection and degradation of Imidacloprid.

Ts	al	n and	4 μΑ	5 -240	And	Rice	Wor
	Quantification	Degradation		μM	99.6% in		k
	(DPV) and				100s		
	catalytic						
	degradation						

References:

- 1 B. B. Kamble, B. D. Ajalkar, A. K. Tawade, K. K. Sharma, S. S. Mali, C. K. Hong, C. Bathula, A. N. Kadam and S. N. Tayade, *J. Mol. Liq.*, 2021, **324**, 115119
- E. E. S. Bruzaca, R. C. De Oliveira, M. S. S. Duarte, C. P. Sousa, S. Morais, A. N. Correia and P. De Lima-Neto, *Anal. Methods*, 2021, **13**, 2124–2136.
- 3 Z. Liu, Y. Tian, X. Dong, X. Zhou, X. Liu and L. Huang, *New J. Chem.*, 2021, **45**, 3469–3478.
- 4 W. Lei, Q. Wu, W. Si, Z. Gu, Y. Zhang, J. Deng and Q. Hao, *Sensors Actuators B. Chem.*, 2013, **183**, 102–109.
- 5 Q. Wang, H. Zhangsun, Y. Zhao, Y. Zhuang, Z. Xu, T. Bu, R. Li and L. Wang, *J. Hazard. Mater.*, 2021, **411**, 125122.
- 6 S. Babazadeh, P. A. Moghaddam, S. Keshipour and K. Mollazade, *Sci. Rep.*, 2020, **10**, 1-8.
- 7 W. Hayat, Y. Zhang, I. Hussain, X. Du, M. Du, C. Yao, S. Huang and F. Si, *Chem. Eng. J.*, 2019, **370**, 1169–1180.
- 8 B. Yang, Z. Ma, Q. Li, X. Liu, Z. Liu, W. Yang, X. Guo and X. Jia, *New J. Chem.*, 2020, 44, 1090–1096.
- 9 I. S. Grover, S. Singh and B. Pal, J. Agric. Food Chem., 2014, 62, 12497–12503.
- 10 C. Zhang, F. Li, H. Zhang, R. Wen, X. Yi, Y. Yang, J. He, G. G. Ying and M. Huang, *J. Hazard. Mater.*, 2021, **420**, 126556.