# Supplementary Information for

# Exogenous N-acyl-homoserine lactone-based quorum sensing regulation benefits

### Nitrosomonas europaea resistance to CeO<sub>2</sub> nanoparticle acute stress

Huan Gao<sup>1,2</sup>, Junkang Wu<sup>1,3</sup>, Yan Chang<sup>4</sup>, Jinyu Ye<sup>1,2</sup>, Guangping Yang<sup>5</sup>, Ran Yu<sup>1,2\*</sup>

 Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu, China 210096
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, China 210009
Department of Water Supply and Drainage Science and Engineering, College of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
Jiangsu Environmental Protection Industrial Park Development Co. Ltd., Nanjing, Jiangsu, 210019, China
Chinair Envir. Sci-Tech Co., Ltd., Nanjing, Jiangsu, 210019, China

# **Corresponding authors**

Ran Yu, Southeast University, No.2 Sipailou Street, Nanjing, 210096, China; Phone: (+86) 15312083786; Fax: (+86) 25 83792614; Email: yuran@seu.edu.cn

### The followings are included as supporting information for this paper:

number of pages: 11

number of figures: 5

number of tables: 2

### Text S1

The influent cultivation medium was chiefly contained 10 mM of  $(NH_4)_2SO_4$ , 0.8 mM of MgSO<sub>4</sub>·7H<sub>2</sub>O, 0.5 mM of K<sub>2</sub>HPO<sub>4</sub>, 0.1 mM of CaCl<sub>2</sub>·2H<sub>2</sub>O, 10 mM of 3-[4-(2-Hydroxyethyl)-l-piperazine] propanesulfonic acid, 2.4  $\mu$ M EDTA-Fe<sup>3+</sup>, 1  $\mu$ M CuSO<sub>4</sub>·5H<sub>2</sub>O, 0.9  $\mu$ M of MnCl<sub>2</sub>·4H<sub>2</sub>O, 0.4  $\mu$ M Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O, 0.3  $\mu$ M ZnSO<sub>4</sub>·7H<sub>2</sub>O, and 0.02  $\mu$ M CoCl<sub>2</sub>·6H<sub>2</sub>O.

## Text S2

The culture suspensions (100 mL) were centrifuged at 9, 000 r/min for 10 min, The supernatant was filtered through 0.22  $\mu$ m membrane and was extracted by liquid-liquid extraction with equal volume acidified ethyl acetate. The solvent extracts were evaporated using a rotary evaporator (ASONE, Japan) at 37 °C, and reconstituted in 1 mL ethyl acetate as AHLs in the supernatant, stored at -20 °C.

Extraction of AHLs in *N. europaea* was described below. Biomass achieved after centrifugation was homogenized in 5 mL acidified ethyl acetate and then completely disrupted by an ultrasonic cell disruption system (Xinzhi, Ningbo, China) at 200 W for 15 min (in ice-bath at 3 sec on and 3 sec off). The mixture was subsequently centrifuged at 10, 000 r/min for 10 min, and the supernatant was evaporated with nitrogen gas through a pressured gas blowing concentrator (Ruicheng, Hangzhou, China). The residues were reconstituted in 1 mL of methanol for concentration and stored at -20 °C.

AHLs were detected by a high-performance liquid chromatography. An Agilent 1260 Infinity HPLC system with a ZORBAX Eclipse XDB-C18 column (1.8  $\mu$ m particle size, 50 × 2.1 mm) (Agilent Technologies, USA) was used for AHL analysis. Briefly, 20  $\mu$ L solutions were applied to the column and eluted with a linear gradient of methanol in water (5 ~ 95 %) over a 15 min period at a flow rate of 0.3 mL/min.

### Text S3

The ligated products were amplified with PCR according to the following program: initial denaturation at 95 °C for 10 min; denaturation at 95 °C for 10 s, annealing at 60 °C for 60 s (40 cycles).

### Text S4

The sequence reads consisting of at least 85% bases were progressively trimmed at the 5'-ends until a quality value ≥20 was kept. Downstream analyses were performed using the generated clean reads of no shorter than 25 bp. The clean reads of each sequenced strains were aligned to the N. europaea reference genome (NC\_004757.1) using Bowtie (version 2.2.5). The strand-specific coverage for each gene was calculated using RSeQC (version 2.3.6), and to evaluate the differential t in triplicate bacterial cell cultures. CummeRbund package in R (http://compbio.mit.edu/cummeRbund/) were used to conduct the statistical analyses and visualization. Gene transcription was (TPM) calculated transcripts per million reads by **RSEM** as (http://deweylab.github.io/RSEM/). Changes in expression values were calculated between N. europaea control, 50 mg/L CeO2 NP-treated N. europaea, and C6-HSL and CeO<sub>2</sub> NP-simultaneous treated N. europaea by determining the log2 transformed (FC) of the averaged TPM values of triplicate experiments. Genes with  $|FC| \ge 1$  and *p*-value of <0.05 were labeled genes with highly differentially expression.

Fig. S1 SEM image of  $CeO_2$  NPs (A) and their size distribution (B) (based on measurements of 100 random particles).





**Fig. S2** Effects of  $C_6$ -HSL,  $C_{10}$ -HSL, or  $C_{14}$ -HSL on particle size (A) and zeta potential (B) of the cell-NP complex.

**Fig. S3** Clusters of orthologous group (COG) assignments of differentially expressed genes of *N. europaea* after 6-h exposure to 50 mg/L CeO<sub>2</sub> NPs (Str. / Nor.) and to both NPs and C<sub>6</sub>-HSL (Imp. / Nor.), respectively, compared with the unexposed normal cells, or compared with the exposed cells (Imp. / Str.).



Fig. S4 Differentially expressed functional genes related to DNA replication, recombination and repair and transcription after 6-h CeO<sub>2</sub> NP exposure or NPs /  $C_6$ -HSL mixed exposure.

Note: the unexposed normal cells are the reference ( $p \le 0.05$ , and  $|FC| \ge 1.0$ ).



Fig. S5 Concentrations of AHLs in supernatant (A) and biomass (B).

Note: '\*' and '&' indicate significant differences ( $p \le 0.05$ ) for test samples when compared to normal cells and NP-treated cells without AHL addition, respectively. ND: not detected.



**Table S1** The oligonucleotide primers for selected genes used in qRT-PCRquantification.

| Target Gene | Primer Sequence                 | References |  |
|-------------|---------------------------------|------------|--|
| 16S rRNA    | F:5' CGTGTCGTGAGATGTTGGGT 3'    | [1]        |  |
|             | R:5' CGTGCTTTCTGAGATTGGC 3'     |            |  |
| amoC3       | F:5' GGGGCTTCGTTATCCTGG 3'      | This study |  |
|             | R:5' AGAATGGCTCTGTCCTGCTT 3'    |            |  |
| amoA1       | F:5' TGGCGACATACCTGTCACAT 3'    | [2]        |  |
|             | R:5' ACAATGCATCTTTGGCTTCC 3'    | [*]        |  |
| NE0025      | F:5' AGCGTCTTTATGTCCGTTCAGC 3'  | [3]        |  |
| NE0925      | R:5' GGCATCAGCACCGATTTGTTT 3'   | [0]        |  |
| cyt_c552    | F:5' GTCGTTGGCCCTGCACT 3'       | [4]        |  |
|             | R:5' ATACACCGCTGCTGCCG 3'       | [,]        |  |
|             | F:5' TGGGACGCTTCACCACTCTGTAA 3' | [4]        |  |
| rpse        | R:5' AAATCGCTCTCATTGGCCCT 3'    | Γ.1        |  |

| Gene       | Locus_tag    | Product                                             | FC (log <sub>2</sub> value) |           |           |  |
|------------|--------------|-----------------------------------------------------|-----------------------------|-----------|-----------|--|
|            |              |                                                     | Str./Nor.                   | Imp./Nor. | Imp./Str. |  |
| Fe-S clust | ter assembly |                                                     |                             |           |           |  |
|            | NE1452       | Hypothetical protein                                | -3.18                       | -         | 3.93      |  |
|            | NE1451       | hesB/yadR/yfhF family protein                       | -3.58                       | -         | 4.41      |  |
|            | NE1450       | Cysteine desulfurase activator complex subunit SufB | -3.83                       | -         | 4.66      |  |
| ycf16      | NE1449       | Iron-regulated ABC transporter ATPase subunit SufC  | -3.26                       | -         | 3.69      |  |
|            | NE1448       | Hypothetical protein                                | -3.12                       | -         | 3.40      |  |
|            | NE1445       | Nitrogen-fixing protein NifU                        | -2.06                       | -         | 2.44      |  |
| Chaperon   | ie           |                                                     |                             |           |           |  |
|            | NE2074       | HSP20 family protein                                | -                           | -         | 1.24      |  |
| grpE       | NE1950       | Heat shock protein GrpE                             | -                           | 1.03      | 1.11      |  |
| dnaK       | NE1949       | Molecular chaperone DnaK                            | -                           | 1.63      | 1.87      |  |
| dnaJ       | NE1948       | Chaperone protein DnaJ                              | -                           | 1.13      | 1.06      |  |
|            | NE1024       | U7 family peptidase                                 | -                           | -         | 1.02      |  |
|            | NE0970       | Insulinase family protein                           | -                           | -         | 1.28      |  |
| fkpA       | NE0079       | FKBP-type peptidyl-prolyl cis-trans isomerase       | -                           | -         | 1.11      |  |
| tig        | NE0030       | FKBP-type peptidyl-prolyl cis-trans isomerase       | -                           | -         | 1.25      |  |
| groEL      | NE0028       | Chaperonin GroEL                                    | -                           | 2.50      | 3.30      |  |
| groES      | NE0027       | Co-chaperonin GroES                                 | -1.00                       | 2.34      | 3.36      |  |
|            | NE1897       | M48 family peptidase                                | 1.56                        | -         | -1.19     |  |
| Oxidative  | stress       |                                                     |                             |           |           |  |
|            | NE2468       | Hypothetical protein                                | 1.18                        | -         | -1.00     |  |
|            | NE1911       | Glutaredoxin-related protein                        | 1.75                        | -         | -1.17     |  |
|            | NE1408       | Sensory transduction histidine kinases              | 1.32                        | -         | -1.21     |  |
| nlaB       | NE1184       | Phospholipid and glycerol acyltransferase           | 1.11                        | -         | -1.01     |  |
| bcp        | NE0772       | Bacterioferritin comigratory protein                | 1.21                        | -         | -1.47     |  |

**Table S2** Functional genes related to posttranslational modification and chaperones with significant transcriptional responses to C<sub>6</sub>-HSL ( $p \le 0.05$ , and  $|FC| \ge 1.0$ ).

#### Cytochrome c. maturation

| сусН   | NE0771 | Hypothetical protein                                | 1.48 | -    | -1.52 |
|--------|--------|-----------------------------------------------------|------|------|-------|
| ccmH   | NE0770 | Cytochrome c-type biogenesis protein CcmH           | -    | -    | -1.67 |
| ccmG   | NE0769 | periplasmic protein thiol: disulfide oxidoreductase | -    | -    | -1.17 |
| ccmF   | NE0768 | Cytochrome c-type biogenesis protein CcmF           | 1.27 | -    | -1.02 |
| ccmE   | NE0767 | Cytochrome c-type biogenesis protein CcmE           | 1.27 | -    | -1.01 |
| Others |        |                                                     |      |      |       |
|        | NE1898 | Hypothetical protein                                | 2.27 | -    | -2.88 |
|        | NE1285 | Band 7 protein                                      | -    | 1.07 | 1.22  |
|        | NE1181 | PemK-like protein                                   | -    | -    | 1.03  |
|        | NE0295 | Hypothetical protein                                | -    | -    | 1.02  |

# References

 CHANDRAN K, LOVE N G. Physiological State, Growth Mode, and Oxidative Stress Play a Role in Cd(II)-Mediated Inhibition of Nitrosomonas europaea 19718 [J].
Applied & Environmental Microbiology, 2008, 74(8): 2447-53.

[2] LAUCHNOR E G, RADNIECKI T S, SEMPRINI L. Inhibition and gene expression of Nitrosomonas europaea biofilms exposed to phenol and toluene [J]. Biotechnology & Bioengineering, 2015, 108(4): 750-7.

[3] WU J, LU H, ZHU G, et al. Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea [J]. Appl Microbiol Biotechnol, 2017, 101(7): 2953-65.

[4] HIDETOSHI U, JUNPEI M, KAZUHO I, et al. DNA microarray mediated transcriptional profiling of Nitrosomonas europaea in response to linear alkylbenzene sulfonates [J]. Fems Microbiology Letters, 2010, 2): 166-73.