Supplementary information

Toxicity screening and ranking of diverse engineered nanomaterials using established hierarchical testing approaches with a complementary in vivo zebrafish model

Jasreen Kaur, ^{1,2,†} Ikjot Singh Sohal,^{3,†} Harpreet Singh,¹ Naveen Kumar Gupta, ¹ Sharvan Sehrawat,⁵ Sanjeev Puri,¹ Dhimiter Bello,^{4,*} Madhu Khatri,^{1,6,*}

¹University Institute of Engineering and Technology (UIET), Panjab University, Sector 14, Chandigarh, India; ² Centre for Nanoscience and Nanotechnology, Panjab University, Sector 14, Chandigarh, India; ³Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA; ⁴University of Massachusetts, Lowell, Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences; 883 Broadway Street, Dugan 108-C, Lowell, MA 01854, USA; ⁵Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Punjab, India; ⁶DBT/Wellcome trust IA Early Career Fellow.

[†]Equally contributing authors

*Corresponding authors

Madhu Khatri, PhD

Assistant Professor & DBT/Wellcome trust IA Early Career Fellow University Institute of Engineering and Technology Panjab University Sector-25, Chandigarh, India madhuk@pu.ac.in Tel: +91-9780021944

Dhimiter Bello, ScD, MSc

Professor, Biomedical and Nutritional Sciences

Zuckerberg College of Health Sciences

University of Massachusetts Lowell

883 Broadway Street, Dugan 108-C

Lowell, MA 01854, USA.

Dhimiter Bello@uml.edu

Tel: +1 (978) 934-3343

Results

Nanoparticles	Concentration of ions in nanoparticle suspension (ug/mL)	% Dissolution in case of nanoparticles
CuO	29.3	73.4
CeO ₂	ND	-
TiO ₂	7.2	14.3
ZnO	27.0	67.2
ZnFe ₂ O ₄	7.1	51.6
50 μg/mL		

Table S1. Water-soluble ion concentration of nanoparticle dispersions in Holtfreter's medium at

Methods

 Table S2. Summary of major uses of tested nanoparticles in this study.

Nanoparticles	Applications
CuO	Burning rate catalyst in rocket propellants, catalyst, superconducting materials, ceramics resistors, gas sensors, semiconductors, antibacterial applications, etc.
CeO ₂	Oxidation resistant coatings, oxygen sensors, oxygen pumps, heat resistant alloy coatings, coating for infrared filters, biomedicines, drug delivery, catalysts etc.
TiO ₂ -A	Electrodes, solar cells, sunscreens, whitening agent such as in paints, paper, laser toners, antibacterial coatings, cancer treatment, light emitting diodes, solar cells etc.
TiO ₂ -R	Antiseptic and antibacterial compositions, UV resistant materials, cosmetic products, paper industry printing ink, laser toners, glass coating etc.
Qdots	Semiconductor devices, imaging, miniature lasers, TV or computer displays, etc.
SiO ₂	<i>Amorphous:</i> Protein adsorption and separation, drug and gene delivery, fungal resistant materials, molecular imaging, etc. <i>Crystalline:</i> Filler in numerous industrial coatings and mortar applications.
ZnFe ₂ O ₄	Gas sensors, magnetic materials, catalysis, foundry, etc.
ZrO ₂	Ceramic pigments, artificial jewelry, abrasive materials, fire retarding material, optical storage, light shutters, etc.
ZnO	Manufacture of rubber and cigarettes, calamine lotion, ointments to treat skin diseases, concrete additive, food additive, sunscreen, whitening agent in paints, etc.
Au	Antibiotic, antifungal, nanowires, catalyst applications, delivery of therapeutic agents, photodynamic therapy, sensors, etc.

Gene	Sequence
180 mDNA	Forward – 5' TCGCTAGTTGGCATCGTTTATG 3'
	Reverse – 5' CGGAGGTTCGAAGACGATCA 3'
САРОН	Forward – 5' GTGGAGTCTACTGGTGTCTTC 3'
GAI DII	Reverse – 5' GTGCAGGAGGCATTGCTTACA 3'
SOD1	Forward – 5' AGACCTGGGTAATGTGACCG 3'
SODI	Reverse – 5' CGGGCTAAGTGCTTTCAGAG 3'
HMOV1	Forward – 5' GGAAGAGCTGGACAGAAACG 3'
IIMOAI	Reverse – 5'GACAGATCTCCGAGGTAGCG 3'
CDV1	Forward – 5' GAGGCACAACAGTCAGGGAT 3'
GIAI	Reverse – 5' TCTCCCATAAGGGACACAGG 3'
UN1	Forward – 5'CTGAACTTCTCTACACACTGAGG 3'
11111	Reverse – 5'CCTTATCACC ATCACCTCACTTC 3'

 Table S3. Primers used for carrying out qPCR reactions for oxidative stress and hatching rate.

Nanoparticle	LC 50 (µg/ml)	IC50 (Percentage tail DNA) (µg/ml)
CuO	41.90	4.86
CeO ₂	24.26	15.08
TiO ₂ -A	795.57	163.09
Qdots	512.8	-
SiO ₂	41.16	13.66
ZnO	216.41	5.63

 Table S4. LC50 lethal concentration of toxic nanomaterials in zebra fish embryos.

Figures

Figure S1. SEM images of the nanomaterials in both dry state and after dispersions in the Holtfreter's medium at 50 μ g/mL concentration.

Figure S2. Fraction of administered dose delivered over a time period of 24 hours for all ENMs in RPMI media.

Figure S3. Fraction of administered dose delivered over a time period of 24 hours for all ENMs in Holtfreter's media.

Figure S4. Survival rate of zebrafish embryos after treatment with salts of respective ENMs (A)

fertilization.

Certificate

This is certify that the project title Chronic nanomaterial toxicity screening the approved by been using zebra fish model has University, IAEC, Panjab PU/45/99/CPCSEA/IAEC/2019/ 387 the by Chandigarh (160014).

Number of Animals approved:

20 male/female Dario Revio/ Zebra fish per year far 24 months

Member Secretary IAEC

CPCSE *6*minee

(Chairman LAEC) Panjab University

Chandigarh

Wiember Secretary IAI

(Kindly make sure that minutes of the meeting duly signed by all the participants are maintained by Office)

Res earc <u>h</u> ethi cs app rov al