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Microkinetic modeling methods

In this study, we employed a microkinetic framework based on the Sabatier analysis!
to find an upper bound of the overall reaction rate of Hg® oxidation. The Sabatier rate!
is the reaction rate when each elementary reaction is assumed to be optimal, which
can well reflect the catalytic reaction ability of the surface. This process is similar to
the previously reported modeling for oxidation reactions? 3. Based on the discussions
in the main text, the reaction of Hg® oxidation can be divided into the following four

elementary steps:

O, +* 2 0,* (R1)

0,* + Hg 2 HgO* (R2)
HgO* + Hg 2 (HgO),* (R3)
(HgO),* 2 (HgO), +* (R4)

where R1 is assumed to be in equilibrium. The forward rate constants of the
remaining steps are given by:
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where Vi is the prefactor, Eqi is the activation energy, ai is the entropy

difference between the transition state and the initial state, k is the Boltzmann

constant, and T is the temperature. Yl is estimated by kT/ h, where I is the Planck’s

constant.
Assuming R1 is in equilibrium, this gives:

1
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where K; is the equilibrium constant of R1, p(03) is the partial pressure of O,. K; was

calculated by:
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where Gy is the free energy of R1. The Sabatier rate (T i 1) of the overall
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reaction (rS) was estimated by the minimum reaction rate among R2-R4 as a function

of O adsorption energy:

S S S
re = Min[r " r T r T
(7)
Finally, the volcano activity plot is plotted as:

A=kTLn[rsh/kT] ()
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Catalyst structure

Figure S2. Adsorption energy of O, and Hg? on ten single-atom catalysts
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IMO 181 |TS(101.61ecmn| M1 IM2 IS0
ISTIM1 (E, = 1.84 6V) IM2—IS0 (E, = 4.89 eV) AE= -0.84 eV

Figure S3. Reaction pathway of catalytic oxidation of Hg® on Sc;-N4-C. C, N, and Sc

are denoted by brown, blue, and pink, respectively.
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Figure S4. Reaction pathway of catalytic oxidation of Hg? on V|-N4-C. C, N, and V

are denoted by brown, blue, and red, respectively.
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Figure S5. Reaction pathway of catalytic oxidation of Hg® on Cr;-N4-C. C, N, and Cr

are denoted by brown, blue, and yellow, respectively.
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Figure S6. Reaction pathway of catalytic oxidation of Hg? on Co;-N4-C. C, N, and Co

are denoted by brown, blue, and orange, respectively.
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Figure S7. Reaction pathway of catalytic oxidation of Hg® on Ni;-N4-C. C, N, and Ni

are denoted by brown, blue, and light grey, respectively.
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Figure S8. Reaction pathway of catalytic oxidation of Hg on Cu;-Ny-C. C, N, and Cu

are denoted by brown, blue, and light blue, respectively.
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Figure S9. Reaction pathway of catalytic oxidation of Hg? on Zn;-N,4-C. C, N, and Zn

are denoted by brown, blue, and grey, respectively.
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Figure S10. Optimized geometric structures of six Co-N-C catalysts. C, N, and Co

are denoted by brown, blue, and orange, respectively.
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Figure S11. Predicted rate-determining step barriers for 72 SACs in the catalytic

oxidation of Hg’.
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1IS1-IM1 (E, = 2.75 eV) IM2—IS0 (E, = 1.59 eV) AE = 0.24 eV

Figure S12. Reaction pathway of catalytic oxidation of Hg® on Pt;-N;-Cs. C, N, and

Pt are denoted by brown, blue, and silver white, respectively.
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Figure S13. Reaction pathway of catalytic oxidation of Hg® on Co;-N,-C,. C, N, and

Co are denoted by brown, blue, and orange, respectively.
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Figure S14. Reaction pathway of catalytic oxidation of Hg? on Co;-N3-C,. C, N, and

Co are denoted by brown, blue, and orange, respectively.
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Figure S15. Reaction pathway of catalytic oxidation of Hg® on Co;-N4-C,. C, N, and

Co are denoted by brown, blue, and orange, respectively.
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Figure S16. Reaction pathway of catalytic oxidation of Hg® on Co;-N3-C;. C, N, and

Co are denoted by brown, blue, and orange, respectively.
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Figure S17. Reaction pathway of catalytic oxidation of Hg® on Ir;-Ny-C. C, N, and Ir

are denoted by brown, blue, and light yellow, respectively.
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