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Text S1. Analytical condition of LC/MS. 

The oxidation intermediates were analyzed by a ultra-high performance liquid chromatograph 

(Vanquish UHPLC) coupled with quadrupole orbitrap mass spectrometry (Q Exactive Orbitrap 

MS). The separation was performed with Water Cortecs C18 column (150 × 2.1, 1.63 um) with 

the column temperature 45°C. 0.1% of formic acid (A) and methanol (B) were used as the 

eluent at a flow rate of 0.25 mL/min and the elution gradient was as follows: A:B = 95:5 for 0-

0.5 min, A:B = 80:20 for 0.5-7 min, A:B = 5:95 for 7-10 min, A:B = 5:95 for 10-11 min and 

A:B = 95:5 for 11.1-15 min. The heated electrospray ionization source interface was operated 

in the negative ionization mode with following conditions: spray voltage =3500 V, capillary 

temperature = 320°C, spray current = 28 µA, sheath gas flow rate =50 arbitrary units, auxiliary 

gas flow rate =10 arbitrary units, sweep gas flow rate =1 arbitrary units, S-lens RF level =50. 

The full scan mode analysis was conducted with a scan range from 50 to 200 m/z.          
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Table S1. Comparison of degradation efficiency of yolk–shell-structured catalysts. 

No. Catalyst
Pollutant 

concentration

Catalyst 

dosage

(g/L)

Oxidant

dosage

Reaction

time

(min)

Degradation

efficiency

(%)

Ref.

1

Yolk–shell 

Co/C 

nanoreactor/

PMS

20 mg/L

(BPA)
0.1

0.15 g/L

(PMS)
15 100 [S1]

2

Yolk–shell 

Co3O4@MOFs/

PMS

0.78 mM

(4-chlorophenol)
0.5

0.8 mM

(PMS)
150 100 [S2]

3

Co/N/S-doped 

yolk–shell 

carbon/PMS

60 mg/L

(4-nitrophenol)
0.1

0.2 g/L

(PMS)
30 98 [S3]

4
AuNS@ySiO2/

PDS

0.5 mM

(phenol)
2.0

10 mM

(PDS)
20 100

This

study
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Table S2. Comparison of PDS-utilization efficiency. 

No.
Catalytic 
system

Pollutant 
concentration

Catalyst 
dosage

PDS 
dosage

PDS 
utilization 
efficiency

Ref.

1 nFe0/PDS
0.1 mM

(4-chlorophenol)
0.05 g/L 1 mM 8% [S4]

2
Carbon 

nanotube/PDS
0.1 mM

(4-chlorophenol)
0.1 g/L 1 mM 83% [S4]

3
CuO-

gFe2O3/PDS
20 mg/L

(Acid orange)
0.6 g/L 0.8 g/L 90.8% [S5]

4
Co3O4-

CeO2/PDS
20 mg/L

(Diclofenac)
1.0 g/L 0.1 g/L 20% [S6]

5
Graphitized 

nanodiamonds/
PDS

0.01 mM
(Phenol)

0.1 g/L 1 mM 3.5% [S7]

6
Nanodiamonds

-2000/PDS
0.1 mM

(4-chlorophenol)
0.05 g/L 0.5 mM 89.5% [S8]

7
CuO/MgO 
hybrid/PDS

0.2 mM
(Bisphenol A)

0.18 g/L 0.2 mM 37.3% [S9]

8
AuNS@ySiO2/

PDS
0.5 mM
(Phenol)

2.0 g/L 10 mM 93.2%
This 
study
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Table S3. Cumulative concentration of gold ions leached during repeated degradation 

processes ([phenol]0 = 0.10 mM; [PDS]0 = 10.0 mM; [AuNS@ySiO2]0 = 2.0 g/L; pH = 3.0; 

reaction time = 40 min) 

Cycle
Concentration of 

leached gold ions (g/L)

Cumulative concentration 

of leached gold ions (g/L)

1st cycle 0.509 0.509

2nd cycle N.D.* 0.509

3rd cycle 0.0345 0.5435

4th cycle 1.8575 2.401

AuNS@ySiO2

5th cycle 1.333 3.734

*: Not detected.
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Table S4. Second-order rate constants for the reactions of reactive oxidants with various 

radical scavengers

Scavenger Radical species Rate constant, k (M−1s−1)
Referenc

e

•OH  = 9.7 × 108𝑘
𝑂𝐻•

Methanol
SO4

•
 = 3.2 × 106

𝑘
𝑆𝑂

•
4

[S10, 
S11]

•OH  = 3.8 × 108–7.6 × 108𝑘
𝑂𝐻•

TBA
SO4

•
 = 4 × 105–9.1× 105

𝑘
𝑆𝑂

•
4

[S10]
[S12]

•OH  = 6.6 × 109𝑘
𝑂𝐻• [S10]

DMSO
SO4

•
 = 3.0× 109

𝑘
𝑆𝑂

•
4 [S13]



7

Table S5. Second-order rate constants for the reactions of •OH, SO4
•, and 1O2 with various 

organic pollutants

Organic pollutants Reactive species Rate constant, k (M−1s−1) Reference

•OH  = 6.6 × 109
𝑘•𝑂𝐻

SO4
•

 = 8.8 × 109
𝑘

𝑠𝑜•
4Phenol

1O2  = 2 × 106–3 × 106𝑘¹𝑂₂

[S10]
[S14, S15]

•OH  = 4.3 × 109
𝑘•𝑂𝐻

Benzoic acid
SO4

•
 = 1.2 × 109

𝑘
𝑠𝑜•

4

[S10]
[S12]

•OH = 1.5 × 1010
𝑘•𝑂𝐻

 

Furfuryl alcohol
1O2 = 1.2 × 108𝑘¹𝑂₂ 

[S10]
[S15]

•OH  = 2.25 × 109
𝑘•𝑂𝐻

Atrazine
SO4

•
2.59 × 109

𝑘
𝑠𝑜•

4
= [S16]

•OH  = 4.3 × 109
𝑘•𝑂𝐻 [S17]

Sulfamethoxazole
SO4

•
 = 6.6 × 109–11.8 × 109

𝑘
𝑠𝑜•

4 [S18]
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Fig. S1. Low-magnification TEM images of (a) sSiO2, (b) sSiO2-NH2, (c) sSiO2@AuNS, (d) 

sSiO2@AuNS@sSiO2, (e) sSiO2@AuNS@sSiO2@oSiO2, and (f) AuNS@ySiO2. All scale bars 

represent 300 nm.



9

Fig. S2. Adsorption of phenol by bAuNS, hSiO2, sSiO2@AuNS, and AuNS@ySiO2. ([phenol]0 

= 0.50 mM; [bAuNS]0 = 0.76 g/L, [hSiO2]0 = 1.4 g/L, [sSiO2@AuNS]0 = 7.2 g /L, 

[AuNS@ySiO2]0 = 2.0 g/L; pH = 3.0; reaction time = 60 min).
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Fig. S3. Photographs captured before and after PDS treatment of: (a and b) bAuNS, (c and d) 

sSiO2@AuNS, and (e and f) AuNS@ySiO2 ([phenol]0 = 1.5 mM; [PDS]0 = 30.0 mM; [bAuNS]0 

= 0.76 g/L, [sSiO2@AuNS]0 = 7.2 g /L, [AuNS@ySiO2]0 = 2.0 g/L; pH = 3.0; reaction time = 

60 min). 
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Fig. S4. TEM images of before and after PDS treatment for (a and b) bAuNS, (c and d) 

sSiO2@AuNS, and (e and f) AuNS@ySiO2. Scale bars in (a−d) and (e and f) represent 1 m 

and 500 nm, respectively. ([phenol]0 = 1.5 mM; [PDS]0 = 30.0 mM; [bAuNS]0 = 0.76 g/L, 

[sSiO2@AuNS]0 = 7.2 g /L, [AuNS@ySiO2]0 = 2.0 g/L; pH = 3.0; reaction time = 60 min).  
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Fig. S5. TEM images of AuNS@ySiO2 (a) before (initial) and (b) after (5th cycle) PDS 

treatment. All scale bars represent 1 m. ([phenol]0 = 0.10 mM; [PDS]0 = 10.0 mM; 

[AuNS@ySiO2]0 = 2.0 g/L; pH = 3.0; reaction time = 40 min).
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Fig. S6. Kinetic rates of phenol degradation in the presence of excess scavengers ([phenol]0 = 
0.50 mM; [PDS]0 = 10.0 mM; [MeOH]0 = [TBA]0 = [DMSO]0 = 100 mM; [AuNS@ySiO2]0 = 
2.0 g/L; pH = 3.0; reaction time = 20 min).
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Fig. S7. Degradation of phenol by the Ag(I)/PDS system and the AuNS@ySiO2/PDS system 
([phenol]0 = 0.50 mM; [PDS]0 = 10.0 mM; [Ag(I)]0 = 25 mM; [AuNS@ySiO2]0 = 2.0 g/L; pH 
= 3.0; reaction time = 20 min).
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Fig. S8. Schematic illustration of nonradical pathway in the AuNS@ySiO2/PDS system. 
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Fig. S9. Decomposition of PDS in the presence and absence of phenol in the 
AuNS@ySiO2/PDS system ([phenol]0 = 0.50 mM; [PDS]0 = 10.0 mM; [AuNS@ySiO2]0 = 2.0 
g/L; pH = 3.0; reaction time = 20 min).
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Fig. S10. Formation of hydroquinone and benzoquinone as phenol oxidation intermediates by 
the AuNS@ySiO2/PDS system ([phenol]0 = 0.50 mM; [PDS]0 = 10.0 mM; [AuNS@ySiO2]0 = 
2.0 g/L; pH = 3.0; reaction time = 20 min).
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Fig. S11. RSLC spectra of (a) benzoquinone and (b) hydroquinone. LC/MS spectra of (c) 
maleic acid and (d) succinic acid. RSLC spectra of (e) formic acid and acetic acid.
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Fig. S12. Pathway of phenol degradation by the AuNS@ySiO2/PDS system.
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Fig. S13. Degradation of phenol in the presence of humic acid and PDS ([phenol]0 = 0.50 mM; 

[PDS]0 = 10.0 mM; [humic acid]0 = 5, 10 ppm; pH = 3.0; reaction time = 20 min). 
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Fig. S14. Particle size distribution of humic acid ([humic acid]0 = 10 ppm, pH = 3.0). 
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