Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supporting information

An upcycled wood sponge adsorbent for drinking water purification

by solar steam generation

Meng Li^{1,*}, Mengwen Xu¹, Quanyu Shi¹, Haotian Wang¹, Hongmin Guo¹, Lidong Wang^{1,*},

Tony D. James^{2,3}

¹ Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China ² Department of Chemistry, University of Bath, Bath, BA2 7AY, UK

³ School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P.

R. China

Catalogue

Fig. S1 Photograph of the wood sponge(a) and its x-y direction SEM images(b)
Fig. S2 (a) Pore size distribution and (b) specific surface area values of balsa wood, wood sponge and MWS4
Fig. S3 Fitting results for pseudo-first-order
Fig. S4 Fitting results for Freundlich
Fig. S5 XPS spectrum of MWS before and after adsorption of Hg ²⁺
Fig. S6 UV–Vis–NIR absorption spectra of balsa wood, PVA-MWS-Hg ²⁺ series
Fig. S7 The temperature change of different samples under one sun irradiation (100 mW cm ⁻)
Fig. S8 Variation of surface temperature at different sample (under 1 sun)
Fig. S9 Water mass changes with time for PVA-MWS-Hg ²⁺ with different substrate thicknesses under 1 kW·m ⁻² -simulated light irradiation
Fig. S10 Infrared photographs as a function of solar irradiation time for PVA-MWS-Hg ²⁺ at different optical concentrations
Fig. S11 Schematic design of the desalination device for water purification
Fig. S12 Evaluation of water purity using a multimeter with a constant distance between electrodes. (a) Artificial seawater by dissolving salts in deionized water. (b) purified water via the as-developed method
Fig. S13 The optical images of samples after treatment with different concentrations of NaCl.
Fig. S14 The optical images of samples after treatment with (a, b) alkali and (c, d) acids12
Fig. S15 Outdoor solar steam generator setup; the mass changes of water for solar steam generation under natural sunlight. .13
Fig. S16. DSC signal of PVA-MWS-Hg ²⁺ 13
Fig. S17 Solar steam efficiency compared with the reported evaporation efficiency14
Table S1 Adsorption parameters of Hg ²⁺ ions. 15
Table S2 Fitting of adsorption parameters. 15
Table S3 Thermodynamic parameters for adsorption of Hg ²⁺ on adsorbents
Table S4 Parameters of Langmuir competitive isotherm of Cd ²⁺ , Pb ²⁺ and Hg ²⁺ 15
Table S5 The preparation of simulated desulfurization wastewater. 15
Table S6 The preparation of artificial saline water
Table S7 Estimation of materials cost for MoS2 wood sponge composite. 16

Fig. S1 Photograph of the wood sponge(a) and its x-y direction SEM images(b).

Fig. S2 (a) Pore size distribution and (b) specific surface area values of balsa wood, wood sponge and MWS.

Fig. S3 Fitting results for pseudo-first-order.

Fig. S4 Fitting results for Freundlich.

Fig. S5 XPS spectrum of MWS before and after adsorption of Hg^{2+} .

Fig. S6 UV–Vis–NIR absorption spectra of balsa wood and PVA-MWS-Hg $^{2+}$.

Fig. S7 The temperature change of different samples under one sun irradiation (100 mW cm^{-2}).

Fig. S8 Variation of surface temperature at different sample (under 1 sun).

Fig. S9 Water mass changes with time for PVA-MWS-Hg²⁺ with different substrate thicknesses under 1 kW·m⁻²-simulated light irradiation.

Fig. S10 Infrared photographs as a function of solar irradiation time for PVA-MWS- Hg^{2+} at different optical concentrations.

Fig. S11 Schematic design of the desalination device for water purification.

Fig. S12 Evaluation of water purity using a multimeter with a constant distance between electrodes. (a) Artificial seawater by dissolving salts in deionized water. (b) purified water via the as-developed method.

3.5 wt % NaCl 7.5 wt % NaCl 15 wt % NaCl

Fig. S13 The optical images of samples after treatment with different concentrations of NaCl.

Fig. S14 The optical images of samples after treatment with (a, b) alkali and (c, d) acids.

Fig. S15 Outdoor solar steam generator setup; the mass changes of water for solar steam generation under natural sunlight.

Fig. S16. DSC signal of PVA-MWS-Hg²⁺.

Fig. S17 Solar steam efficiency compared with the reported evaporation efficiency.

C., 1		pseudo-first-order			pseudo-second-order		
mg L ⁻¹	$mg g^{-1}$	K_1 , min ⁻¹	q _e , mg g ⁻¹	R_1^2	$K_2 \cdot mg \cdot g^{-1}$	q _e , mg g ⁻¹	R_{2}^{2}
50	49.27	-0.04201	15.72	0.905	0.0111	49.776	0.999

 Table S1 Adsorption parameters of Hg²⁺ ions.

Table S2 Fitting of adsorption parameters.

		Langmuir			Freundlich		
Т,К	q_m , mg g ⁻¹	$\mathrm{K_L}$, L mg ⁻¹	R ²	K _f	n	R ²	
298.15	325.7329	0.1141	0.99860	71.28447	3.29673	0.91174	
318.15	353.356	0.0841	0.99627	60.10477	2.82063	0.90916	
338.15	362.3184	0.0888	0.99324	62.19228	2.81096	0.89568	

 Table S3 Thermodynamic parameters for adsorption of Hg²⁺ on adsorbents.

C ₀	ΔH	ΔS		$\Delta G (kJ mol^{-1})$	
mg L ⁻¹	kJ mol ⁻¹	J K ⁻¹ mol ⁻¹	298.15 K	318.15 K	338.15 K
10	56.65	284.00	-28.01	-33.70	-39.37
20	46.47	247.46	-27.30	-32.25	-37.20
50	12.87	129.11	-25.62	-28.21	-30.79
100	9.06	114.44	-25.05	-27.34	-29.63
200	8.01	107.61	-24.07	-26.22	-28.37
300	6.88	98.55	-22.49	-24.47	-26.44
400	6.23	87.49	-19.85	-22.50	-23.35
500	6.80	84.42	-18.36	-20.05	-21.74

Table S4 Parameters of Langmuir competitive isotherm of Cd^{2+} , Pb^{2+} and Hg^{2+} .

Metal	$K_1 (L mg^{-1})$	$K_2 (L mg^{-1})$	$Q_{max} (mg g^{-1})$	\mathbb{R}^2	Q_{mix}/Q_0	MPSD
Hg ²⁺ (Hg-Pb) 3.13	0.3318	364.5	0.9377	0.9331	14.90
Pb ²⁺ (Hg-Pb)) 2.89	0.0701	473.3	0.9098	2.0334	17.92
Hg ²⁺ (Hg-Cd) 28.62	13.4	221.8	0.9839	0.4535	15.21
Cd ²⁺ (Hg-Cd) 2.94	0.7965	186.2	0.9620	1.1909	3.09

Table S5 The preparation of simulated desulfurization wastewater.

1 abic 55	The preparation	n or sinnulat		ation waster	vater.
Metal	Hg^{2+}	Cr^{3+}	Cd^{2+}	Pb ²⁺	Cu ²⁺
C ₀ (ppm)	0.05	1.5	0.1	1.0	1.0

Table S6 The preparation of artificial saline water.

Water	NaCl	MgCl ₂	MgSO ₄	CaSO ₄	K_2SO_4	CaCO ₃
1000 mL	27.2 g	3.8 g	1.7 g	1.2 g	0.1 g	0.1 g

 Table S7 Estimation of materials cost for MoS₂ wood sponge composite.

Chemicals	Vendor	Price		Materials/device	Price/device
Ammonium					
molybdate	Kermel	500 g	\$ 40.3	1.07 g	\$ 0.0856
tetrahydrate					
Thioacetamide	Kermel	500 g	\$ 22.8	0.88 g	\$ 0.0400
Balsa wood	T-mall	$2 \times 2 \times 1$ cm	¥ 0.89	$2 \times 2 \times 1$ cm	\$ 0.1394
Sodium	77 1	500	W 1 05	1.22	¢ 0.00 22
hydroxide	Kermel	500 g	¥ 1.25	1.33 g	\$ 0.0033
Sodium chlorite	Aladdin	500 g	\$ 10.962	0.33 g	\$ 0.00064
Ethanol	Kermel	2500 mL	\$ 0.62	30 mL	\$ 0.01488
PVA	Kermel	250 g	\$ 2.346	0.167 g	\$ 0.00157
Cost of MoS ₂ -					\$ 0.2838
Cost of PVA- MoS ₂ wood sponge					\$ 0.2854