Kinetic model and linear forms of kinetic equations	Linear plot to determine k	k unit	Observation	Reference
Zero-order kinetic [M] _t = -kt + [M] ₀	[M] _t vs time	M h ⁻¹	The rate of reaction will be independent of the concentration of reactants	1,2
First-order In[M] _t = -kt + In[M] ₀	ln[M] _t vs time	h-1	The rate of reaction depends on the concentration of at least one reactant. Thus, the rate of reaction is proportional to the concentration of the reactant	1,2
Second-order $1/[M]_t = kt + 1/[M]_0$	1/[M] vs time	M ⁻¹ h ⁻¹	The rate is proportional to the square of the concentration of one reactant ($2A \rightarrow$ products). Also, a second-order reaction has a reaction rate that is proportional to the product of the concentrations of two reactants (A+B \rightarrow products)	1,2
Pseudo-first order In([M] ₀ -[M] _t) = In[M] _t -k't	In([M] ₀ -[M] _t) vs time	h-1	This rate of reaction occurs when one reacting material is present in great excess or is maintained at a constant concentration compared with the other substance	3
Pseudo-second order $t/[M]_t=1/k_2[M]_s^2+t/[M]_s$	t/[M] _t vs time	L mol ⁻¹ h		4
One-half- order $[M]_t^{1/2}=-1/2kt+[M]_0^{1/2}$	$\left[M\right]_{t}^{1/2}$ vs time	M ^{1/2} h		5
Three-half-order $1/[M]_t^{1/2}=1/2kt + 1/[M]_0^{1/2}$	$1/[M]_t^{1/2}vs$ time	M- ^{1/2} h	Fractional order reactions often indicate a chemical chain reaction or other complex reaction mechanisms	5
Elovich	[M] _t vs In(time)	M h ⁻¹		
[M] _t = (1/β) In (αβ) + (1/β) Int			This model was originally developed to describe the kinetics of heterogeneous chemisorption of gases on solid surfaces, but it seems to describe several reaction mechanisms, including bulk and surface diffusion, activation and deactivation of catalytic surfaces	2
Higuchi model Mt=kt ^{1/2}	The cumulative amount of drug release vs t ^{1/2}	M h ^{1/2}	 Describe the drug dissolution from the matrix system Assumptions: The matrix contains an initial drug concentration much higher than the solubility of the drug The diffusion is unidirectional The thickness of the dosage form is much larger than the size of the drug molecules 	6

Table S2. Mathematical models of kinetic dissolution rate used to simulate CoFe₂O₄ nanoparticles dissolution.

Hixson-Crowell model W ₀ ^{1/3} – W _t ^{1/3} =k t	[W0-Wt] ^{1/3} vs time	M ^{1/3} h ⁻¹	 The swelling or dissolution of the matrix is negligible The diffusivity of the drug is constant The perfect sink conditions are attained in the release environment It assumes that the drug release is limited by dissolution velocity and not by diffusion 	6
Korsmeyer-Peppas (Mt/M∞)=kt ⁿ	(Mt/M∞) vs t ⁿ	h⁻n	Is a semi-empirical model, and it establish the exponential relationship between the release and the time. The power-law model is useful for the study of drug release from polymeric systems when the release mechanism is not known or when more than one type of phenomenon of drug release is involved. Depending on the value of n that better adjust to the release profile of an active agent in a matrix system, it is possible to establish a classification, according to the type of observed behavior: Fickian model or Non-Fickian model	6,7
Baker-Lonsdale 3/2[1-(1-Mt/M∞) ^{2/3}]-(Mt/M∞)=kt	(Mt/M∞) vs time		Describes the drug-controlled release from a spherical matrix	7
Weibull Model Log[-In (M∞/(M∞-Mt)]= b log (t- T _i)-log a	Log [M]t vs Log time		This model is a distribution function with the property to describe the phenomena and processes associated with a finite time. Take into account that there is not any kinetic fundament and could only describe, but does not adequately characterize, the dissolution kinetic properties of the drug. And there is not any single parameter related to the intrinsic dissolution rate of the drug	7

Notes: $[M]_0$, Concentration of the reactant at the time 0; $[M]_t$, the cumulative concentration of the compound release at the time t; $[M]_s$, the concentration of the compound release at the saturation concentration for the solute in liquid, W_0 , the initial amount of reactant; W_t , the remaining amount of reactant at the time t; $(Mt/M\infty)$, the fraction of drug released at time t; n, it is the release exponent; $M\infty$, amount of dissolved reactant as a function of time; Ti, lag time measured as a result of dissolution process parameters, a scale the parameter that describes the time dependence; b, the shape of dissolution curve (b=1 indicates exponential curve, b=2 indicates sigmoid curve, b=3 indicates parabolic curve).

¹Wells Utembe, Kariska Potgieter, Aleksandr Byron Stefaniak and Mary Gulumian, Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials, *Part. Fibre Toxicol.*, 2015, **12**, 11.

²Donald L. Sparks, "Kinetics of soil chemical process", in Environmental Soil Chemistry, ed. Donald. L. Sparks, Academic Press, Burlington, 2nd edn., 2003, pp. 207–244.

³Raymond Chang, "Chemical kinetics", in Physical Chemistry for the Biosciences, University Science Books, Sausalito, California, 2005, pp. 311–355.

⁴Hamou Moussout, Hammou Ahlafi, Mustapha Aazza and Hamid Maghat, Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models, *Karbala Int. J. Mod. Sci.*, 2018, **4**, 244–254.

⁵Peter Atkins and Julio De Paula, "The rates of chemical reactions", in Atkins' Physical Chemistry, Oxford University Press, London, 8th edn., 2006, pp.791–823.

⁶Marcos Luciano Bruschi, "Mathematical models of drug release", in *Strategies to Modify the Drug Release from Pharmaceutical Systems*, ed. Marcos Luciano Bruschi, Elsevier, 2015, pp. 63–86. ⁷Paulo Costa and José Manuel Sousa Lobo, Modeling and comparison of dissolution profiles, *Eur. J. Pharm. Sci.*, 2001, **13**, 123–133.