Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Multifunctional Dual Emissive Fluorescent Probe Based on Europiumdoped Carbon Dots (Eu-TCA/NCDs) for Highly Selective Detection of Chloramphenicol, Hg²⁺ and Fe³⁺

Farid Ahmed, Shahzad Iqbal, and Hai Xiong* Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.

Corresponding Author Email: <u>hai.xiong@szu.edu.cn</u>

Fig.S1 (a) Selected areas electron diffraction (SAED) pattern of NCDs, (b) XRD spectrum of NCDs.

Fig. S2 High resolution XPS analysis of NCDs, C1s scan, N1s Scan, O1s Scan, and percentage composition.

Fig. S3 High resolution XPS analysis of Eu-TCA/NCDs (a) C 1s scan, (b) N 1s Scan, (c)O 1s Scan and (d) Eu 3d Scan.

Fig. S4 Optical properties of NCDS (a) UV-visible spectrum of NCDs, (b) Excitation-Emission spectrum of NCDs, (c) Wavelength independent emission spectrum of NCDs, and (d) Concentration-dependent emission spectrum of NCDs.

Fig. S5 Change in the fluorescence intensity of NCDs upon interaction with CAP

Fig. S6 Alteration in the fluorescence intensity of EU-TCA upon treatment with CAP.

Fig. S7 Incubation time for the detection of CAP using Eu-TCA/NCDs

Table S1 Comparisor	of current study	y with reported	methods.
---------------------	------------------	-----------------	----------

No	Responsive Technique	Material	LOD (ng/mL)	Reference
1	Raman Spectroscopy	SERS active substrate	4.0	1
2	Chemiluminescence	Colloidal gold particles	6.0	2
3	Microfluidic Immunoassay	CAP-OVA-FITC	50.0	3
4	Electrochemical Assay	f–MoS ₂ /MWCNTs	15.0	4
5	Electrochemical Assay	Sr ₂ Co ₂ O ₅	3.55	5
6	Immunochromatographic Assay	CAP–BSA or CAP–STI	10.0	6
7	Electrochemical Assay	rGO/PdNPs	16.15	7
8	Fluorescence Spectroscopy	TCA-Eu/NCDs	3.87	Current study

Fig. S8 The absorption spectrum of Eu-TCA/NCDs and Eu-TCA/NCDs+ CAP and CAP.

Fig.S9 UV-Visible spectrum of Eu-TCA/CDs in presence of Hg²⁺ and Fe³⁺

Fig.S10 Change in fluorescence intensity of Eu-TCA/NCDs as a function of different Hg^{2+} concentration at 445 nm.

Fig.S11 The change in fluorescence intensity of Eu-TCA/NCDs as a function of different concentration of Fe^{3+} ion at 617 nm.

Fig.S12 Effect of pH on selective recognition of CAP

Fig.S13 Effete of pH on selective detection of $Hg^{2+}at$ 445 nm

Fig.S14 Effete of pH on selective detection of Fe³⁺ at 617 nm.

Fig. S15 Detection of CAP in honey sample using NCDs-Eu-TCA

Fig.S16 Detection of CAP in Milk sample using NCDs-Eu-TCA

Fig.S17 Detection of CAP in tap water sample using NCDs-Eu-TCA

Analyte	NO.	Added Con.	ICPMS		This work	
		(nM)	Found Con.(nM)	Recovery %	Found Con., (nM)	Recovery %
	1	80	79.12±0.48	98.90±1.64	78.29±1.21	97.86±3.21
Hg ²⁺	2	100	102.54±0.36	101.54±0.98	96.46±0.98	96.46±1.45
	3	120	117.23±0.87	97.69±1.26	110.34±2.12	91.93±2.98
	1	80	81.45±0.53	101.81±0.87	81.14±3.64	101.42±1.64
Fe ³⁺	2	100	98.54±0.74	98.54±2.1	94.26±1.23	94.26±2.14
	3	120	124.12±0.68	103.43±1.76	116.63±4.11	97.19±3.32

Table S2 Percentage recovery of Hg²⁺ and Fe³⁺ in tap water samples

References

- K. Lai, Y. Zhang, R. Du, F. Zhai, B. A. Rasco and Y. Huang, Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy, *Sens. Instrument. Food Qual. Saf.* 2011, 5, 19-24.
- 2. X. Tao, J. Shen, X. Cao, Z. Wang, X. Wu and H. Jiang, Simultaneous determination of chloramphenicol and clenbuterol in milk with hybrid chemiluminescence immunoassays, *Anal. Methods*, 2014, **6**, 1021-1027.
- 3. M. Zhao, X. Li, Y. Zhang, Y. Wang, B. Wang, L. Zheng, D. Zhang and S. Zhuang, Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay, *Food Chem.* 2021, **339**, 127857.
- 4. M. Govindasamy, S.-M. Chen, V. Mani, R. Devasenathipathy, R. Umamaheswari, K. J. Santhanaraj and A. Sathiyan, Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk, *J. Colloid Interface Sci.* 2017, **485**, 129-136.
- 5. N. Umesh, A. Sathiyan, S.-F. Wang, E. Elanthamilan, J. P. Merlin and J. A. Jesila, A simple chemical approach for synthesis of Sr2Co2O5 nanoparticles and its application in the detection of chloramphenicol and in energy storage systems, *J. Electroanal. Chem.* 2021, **880**, 114911.
- 6. N. A. Byzova, E. A. Zvereva, A. V. Zherdev, S. A. Eremin and B. B. Dzantiev, Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk, *Talanta*, 2010, **81**, 843-848.
- 7. W. Yi, Z. Li, C. Dong, H.-W. Li and J. Li, Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide, *Microchem. J.* 2019, **148**, 774-783.