SUPPORTING INFORMATION of "Combusted-diesel additives containing CeO₂ nanomaterials shape methanogenic pathways during sludge digestion and enhance biogas production"

Auffan Mélanie^{a,b}, Kabore Abdoul Karim^a, Cuny Anais^{a,c}, Amin Ali Oulfat^c, Barakat Mohamed^c, Angeletti Bernard^a, Proux Olivier^d, Bottero Jean-Yves^{a,b}, Roche Nicolas^{a,e}, Santaella Catherine^c

^a CEREGE, CNRS, Aix Marseille Univ, IRD, INRAE, Aix-en-Provence, France

^b Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA

^c Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint-Paul-Lez-Durance, France

^d OSUG, UAR 832 CNRS - Univ. Grenoble Alpes, IRSTEA, INRAe, Météo-France, Grenoble, France ^e International Water Research Institute (IWRI), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco

Feature volatility analysis: dynamic view of important features: For a dynamic visualization of the feature volatility analysis, open the https://view.qiime2.org/ and drag the volatility_plot.qzv file into the frame. Select group column "treatment" and the ASV number in the metric column menu.

Figure S 1. Aerobic wastewater treatment operating parameters: (A) Evolution of VSS, (B) COD removal, (C) Nitrogen removal, (D) Phosphorus removal, (E) ATP production, (F) pH evolution.

Figure S 2. Microbial community structure of the aerobic sludge. PCA based on Weighted UniFrac distance Abundance & Phylogeny.

Figure S 3. Aerobic sludge response following combusted CeO_2 NMs dosing. (A, B) Specific hydrolytic enzyme activities (Protease and α -glucosidase), (C, D) Polysaccharides of extracellular polymeric substances secretion during the aerobic sludge culture. *Represents data that are statistically significant (p-value<0.05). Values are average \pm standard deviation.

Figure S 4. Distribution and speciation of Ce during the anaerobic sludge production. (Left) Total and dissolved (<3 KDa) Ce concentrations remaining in the liquid phase after separation by centrifugation of the anaerobic sludge (Black symbols). Blue squares represent the total concentration of combusted CeO₂ NMs (in mg CeO₂.L⁻¹) injected in the digestors during 40 days. Red circles represent the Ce concentration in the liquid phase of control digestors at the end of the experiment. Values are means of three repetitions \pm standard deviation. (Right) Experimental HERFD-XANES spectra at the Ce L₃-edge in the anaerobic sludge fed with contaminated aerobic sludge. Experimental XANES spectrum is compared to Ce (III)-phosphate and initial combusted EnviroxTM reference compounds.

Figure S 5. Anaerobic digestion operating parameters. (A). Time course of volatile suspended solids, (B). ATP production, (C). Culture pH. Opened symbols correspond to control culture and filled symbols to reactor spiked with comb-CeO₂ NMs.

Figure S 6. Microbiome composition in the control and comb-CeO₂ contaminated AD. Stacked bar plots showing the relative abundance and distribution of the total microbial community at class level at day (D) 1, 11, 19, 22 and 29.

Figure S 7. Feature volatility analysis: abundance (\pm error bars) of the two most discriminatory ASV over time between the control (orange) and the comb-CeO₂ AD.

Figure S 8. Main physico-chemical and structural and characteristics adapted from Auffan et al. (2017).

Table S 1. Feature volatility analysis is used to determine how microbial communities change over time on the ASV level. Feature importance, and descriptive statistics (global mean and global standard deviation) help guiding an exploratory investigation to identify relevant features for subsequent investigation ⁵⁰.

Table S ⁴⁶. Differentially abundant taxa between the control and comb-CeO₂ contaminated AD. Linear Discriminant Analysis Effect Size (LEfSe): all linear discriminant analysis [LDA] scores, >3). Taxonomy levels: (p), phylum; (c), class; (o), order; (f), family; (g), genus. Relative abundances of taxa that are increased in the control (green) and comb-CeO₂ contaminated (red) AD.

Figure S 1. Aerobic wastewater treatment operating parameters: (A) Evolution of VSS, (B) COD removal, (C) Nitrogen removal, (D) Phosphorus removal, (E) ATP production, (F) pH evolution.

Figure S 2. Microbial community structure of the aerobic sludge. PCA based on Weighted UniFrac distance Abundance & Phylogeny.

Figure S 3. Aerobic sludge response following combusted CeO_2 NMs dosing. (A, B) Specific hydrolytic enzyme activities (Protease and α -glucosidase), (C, D) Polysaccharides of extracellular polymeric substances secretion during the aerobic sludge culture. *Represents data that are statistically significant (p-value<0.05). Values are average \pm standard deviation.

Figure S 4. Distribution and speciation of Ce during the anaerobic sludge production. (Left) Total and dissolved (<3 KDa) Ce concentrations remaining in the liquid phase after separation by centrifugation of the anaerobic sludge (Black symbols). Blue squares represent the total concentration of combusted CeO₂ NMs (in mg CeO₂.L⁻¹) injected in the digestors during 40 days. Red circles represent the Ce concentration in the liquid phase of control digestors at the end of the experiment. Values are means of three repetitions \pm standard deviation. (Right) Experimental HERFD-XANES spectra at the Ce L₃-edge in the anaerobic sludge fed with contaminated aerobic sludge. Experimental XANES spectrum is compared to Ce (III)-phosphate and initial combusted EnviroxTM reference compounds.

Figure S 5. Anaerobic digestion operating parameters. (A). Time course of volatile suspended solids, (B). ATP production, (C). Culture pH. Opened symbols correspond to control culture and filled symbols to reactor spiked with comb-CeO₂ NMs.

Figure S 6. Microbiome composition in the control and comb-CeO₂ contaminated AD. Stacked bar plots showing the relative abundance and distribution of the total microbial community at class level at day (D) 1, 11, 19, 22 and 29.

Figure S 7. Feature volatility analysis: abundance (\pm error bars) of the two most discriminatory ASV over time between the control (orange) and the comb-CeO₂ AD.

Figure S 8. Main physico-chemical and structural and characteristics adapted from Auffan et al. (2017).

Table S 1. Feature volatility analysis is used to determine how microbial communities change over time on the ASV level. Feature importance, and descriptive statistics (global mean and global standard deviation) help guiding an exploratory investigation to identify relevant features for subsequent investigation ⁵⁰.

ASV id	Taxonomy	Importance	Global Mean	Global Standard Deviation
b25e1bee186f7eb0989c7f6fc3aa5204	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanomicrobiales; f_Methanoregulaceae; g_Methanosphaerula; s_	0,23092847	0,010925007	0,008577815
69a67a619729a3c18cd9279f5288778e	k Bacteria: p Firmicutes: c Ervsipelotrichi: o Ervsipelotrichales: f Ervsipelotrichaceae: o Clostridium	0,12050728	0,010680877	0,008045194
f073006bd32de20a6780fee670ef7848	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanomicrobiales; f_Methanocorpusculaceae; g_Methanocorpusculum; s_	0.08013636	0.007543341	0.007733178
5d62e8652303e12b3688e6dd8a655c97	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosarcinaceae; g_Methanosarcina; s_	0,07594373	0,073510722	0,029663486
fa432c2a8dd82599b6149bdebea0c5cc	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosarcinaceae; g_Methanosarcina; s_	0,04820452	0,087228068	0,03522403
016e4569efff3c443c63836c121e8b48	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosarcinaceae; g_Methanosarcina; s_	0,03976776	0,079744692	0,03191055
7ed38bc44ctc94t855841b2ctt7e0554	K_Bacteria, primicutes, c_bacilli, o_cactobacillates, ienterococcaceae, g_enterococcus	0,02521111	0,003066683	0,006750624
18b65b953ad22e76d4a4a0d820c236b4	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosarcinaceae; g_Methanosarcina; s_	0.02443555	0.00372302	0.004803437
c795b456d4f8d5249764fa400c39d2fd	k_Bacteria; p_Synergistetes; c_Synergistia; o_Synergistales; f_Dethiosulfovibrionaceae; g_HA73; s_	0,01916828	0,00214778	0,003326215
1c0449eb9b325b0f92d06f9d8db4f97f	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosarcinaceae; g_Methanosarcina; s_	0,01734321	0,003933845	0,00512809
82f396ff2ab90f1d583e54c2e2f419f8	k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Enterococcaceae; g_Enterococcus	0,01708814	0,014172222	0,015363745
457a4019d39525ec1abb555e41342f6f	k_Bacteria; p_Firmicutes; c_Clostridia; o_Eubacteriales; f_Clostridiaceae; g_Lutispora; s_	0,01567157	0,001225333	0,002817788
be9d9d415e7e21b9625e7d754ce50c76	K_avioraea, p_duryarchaeota, c_weenanomicrobia; o_weenanomicrobiaes; i_weenanocorpusculaceae; g_weenanocorpusculum; s	0,01487859	0,005727205	0,006811843
4053812498617080000023560864882 b9f4996aa883b530cc95d44b84537165	k Bacteria: p Firmicutes; c Bacilli: o Lactobacillales; f Enterococcaceae; Enterococcus	0.01243279	0.015195941	0,005134768
7aca67a8870252b8a4d5a60c7eaf210e	k_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_Marinilabiliaceae; g_; s_	0.0093195	0.006953402	0.007588195
e73b7a9da7cce3b9efb91755deb4563c	k_Bacteria; p_OP8; c_OP8_1; o_OPB95; f_; g_; s_	0,00884474	0,000882169	0,002210582
317b774be93851f16bc9e55ea1ae2da1	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_Anaerolineales; f_Anaerolinaceae; g_T78; s_	0,00832951	0,005219208	0,005176873
7e4a158ab22a1fc3521df29974c11d71	k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Enterococcaceae; Enterococcus	0,00831132	0,004532963	0,005370767
c9034d35606226a8fe7bcaea755967d5	K_Bacteria; p_WWE1; c_Uciacamonaej; o_Uciacamonalesj; t_Uciacamonalesj; t_Uciacamonaceaej; g_Wb; s_	0,00759834	0,00458306	0,006410354
e95d0fff43a6cb5979891b44d684d083	K_Bacteria, p_Bacteriolotes, c_Bacteriolota, o_Bacteriolates, i_roiphyroinonadaceae, g_ratiolotacter, s_	0,00731582	0,004262497	0,005084272
3a81c9f645fbc3284950e21327abbc0f	k Bacteria; p Firmicutes; c Ervsipelotrichi; o Ervsipelotrichales; f Ervsipelotrichaceae; g Clostridium	0.00659725	0.006918149	0,002126499
d2ce3456bf222f92ee79e3d4b9e2d715	k_Bacteria; p_WWE1; c_[Cloacamonae]; o_[Cloacamonales]; f_[Cloacamonaceae]; g_W5; s_	0.00586529	0.003533668	0.004541319
1b1b8c30b9e3fae3889ae67afc835269	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_Anaerolineales; f_Anaerolinaceae; g_T78; s_	0,00539825	0,005391113	0,004867566
15382277f7400ccf7f811fa835ac860c	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanomicrobiales	0,00473687	0,013208162	0,009044998
340a0c7ff79332a02e024db215a6ca5b	k_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_Porphyromonadaceae; g_Paludibacter; s_	0,00411639	0,004132441	0,006039238
0e259dc3f35a58ad137ca6c8ef6b100b	K_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_; g_; s_	0,00349114	0,000901942	0,002848567
37e74ebe8045dt9128cd1a5a2e17bc06	Lociena, p_venucomicropia, c_ireoospnaerae; o_ireoospnaeraesj; t_K4-418; g_; s	0,00344643	0.002054485	0,003722265
1877a7b6cb5ec4f555d2c3140csc7e4c	k_Bacteria; p_Firmicutes; c_Erysipelotrichi; o_Erysipelotrichies; f Erysipelotrichaese: a Clostridium	0.00314717	0.009668159	0,004714843
fa9f2c91a82d324034fba6c63dd2a18c	k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_HOC36; f_; g_; s_	0,00269621	6,33E-05	0.000251113
daa604b8ee0fa7d2ec1ade4dd1304a21	k_Bacteria; p_Synergistetes; c_Synergistia; o_Synergistales; f_Dethiosulfovibrionaceae; g_HA73; s_	0,00269271	9,29E-05	0,000353433
100e064ee992532f55507049eae4519a	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_Anaerolineales; f_Anaerolinaceae; g_T78; s_	0,00263168	0,007947618	0,004657548
924f93bf61584e812e9ef73a5c2146de	k_Bacteria; p_Thermotogae; c_Thermotogae; o_Thermotogales; f_Thermotogaceae; g_Kosmotoga; s_mrcj	0,00241075	0,004464676	0,006253501
c9186cbd86211857b2d4fd74868f6ae3	k_Bacteria; p_Verrucomicrobia; c_Verrumicrobiales; o_Limisphaera; f_B; g_Limisphaera ; s_	0,0021657	0,006292641	0,005133123
1a1acec9969c5c0c502afbf1a75e771c	K_Bacteria; p_Firmicutes; c_Uostindia; o_SHA-98; t_; g_; s_ k_Bacteria; p_MWE1; c_ICloacamonaal; c_ICloacamonales]; f_ICloacamonaceael; c_BHB21; c	0,00203682	0,000370014	0,001569175
164078315a34d12648251d2309177a7d	k Bacteria: p Eimicutes: c Clostridia: p Clostridiales: f Clostridiaceae: g Clostridium: s celatum	0,00192308	0,001175615	0,00319054
dfafd4f68d162137a5c18febdc973900	k Bacteria; p Chloroflexi; c Anaerolineae; o SHA-20; f ; g ; s	0.0017109	0.000472400	0.0001188712
ffdae4f266095e27be194f4109ed97f2	k_Bacteria; p_WWE1; c_[Cloacamonae]; o_[Cloacamonales]; f_[Cloacamonaceae]; g_W5; s_	0.00156044	0.004411748	0.006424281
dc9fb0ba0ddec05ab8d29c9c785a24ef	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosarcinaceae; g_Methanosarcina	0,00148254	0,003308502	0,005079936
e076adc1ede8433ed3671e2fbdeab8aa	k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales	0,00145262	0,002882965	0,004854244
0c57369f098b7b0da0c5289b842c78b0	k_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_BA008; g_; s_	0,00127368	0,001128862	0,001933484
fae185507dc6477376509ad23e1e6a4a	k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Mycobacteriaceae; g_Mycobacterium	0,00119538	0,003298485	0,006485537
4ff45db6ca3155aeb6b40d5866a4ace7	k_Bacteria; pwwwc1, coloacamonaej, ooloacamonalesj, ioloacamonaceaej, gonb21, s	0,00107646	0,005433821	0,006559024
d0f01be5155040b9960ed27ad306084a	k Bacteria; p Chloroflexi; c Anaerolineae: o Anaerolineales; f Anaerolinaceae; g T78; s	0.00097653	0.000302433	0.001895598
0f0d51c640774ef5e01520881c850655	k_Bacteria; p_Fimicutes; c_Clostridia; o_SHA-98; f_; g_; s_	0.00095082	0.000771151	0.002372824
3516b33b08e5cf118a86462c051f414b	k_Bacteria; p_Proteobacteria; c_Epsilonproteobacteria; o_Campylobacterales; f_Campylobacteraceae; g_Arcobacter, s_cryaerophilus	0,00091637	0,00197792	0,003956195
ee20e6bc640f67847b49846e64c99950	k_Bacteria; p_Thermotogae; c_Thermotogae; o_Thermotogales; f_Thermotogaceae; g_Kosmotoga; s_mrcj	0,00090712	0,007265767	0,007855426
ef2bc572632e1414b6960b3fec430f0f	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_DRC31; f_; g_; s_	0,00086326	0,000764654	0,003114053
ea37a52ce042a90525385a968ba66506	k_Bacteria; p_Bacteroidetes	0,00082182	0,000802736	0,001844055
e3ff1d12b164cf0f2e3e7ceac32caee7	K_Bacteria; p_Chloroflexi; c_Arlaerolineae; o_SBR1031; 1_A40; g_; s_	0,00080778	2,24E-05	0,000122753
59eb940fc3bf1f793f16f24bde479f6b	k_Bacteria; p_Thermotogae; c_Thermotogae; o_Thermotogales; f_Thermotogaceae; g_Kosmotoga; s_mrcj	0.00075587	0.00687668	0.006279961
0c38a956bd2609b5283c152eaf540053	k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Xanthomonadales; f_Xanthomonadaceae; g_Dokdonella; s_	0,00066847	9,71E-05	0,000531928
1a48ea43b49bd18cf9bca73fcbc18db4	k_Bacteria; p_Chloroflexi; c_Chloroflexi; o_[Roseiflexales]; f_[Kouleothrixaceae]; g_; s_	0,00060062	3,98E-05	0,00021798
8adea10f902b844f3b75e724402ea47c	k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae	0,00059201	0,0024889	0,004367789
efec3d8b0ef500decbb62e643c0de14a	k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Syntrophobacterales; f_Syntrophorhabdaceae; g_; s_	0,00045398	6,37E-05	0,00034909
bf1e9fb2fd0c829bfa528a75d7236ed3	K_Bacteria; p_Firmicutes; c_Clostindia; o_OPB54; t_; g_; s_	0,00045339	0,000464838	0,001379592
97857880603308093843229035426311	k Bacteria: p. Chloroflexi: c. Anaerolineae: p. : f : a : s	0,00044247	0.001097542	0,004608879
fa69d71d060c3be71805ec2c68630e05	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_Anaerolineales; f_Anaerolinaceae; g_T78; s_	0.00029097	0.003424254	0.002030334
60efd4286a8f4face939b597e6e5a545	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_Anaerolineales; f_Anaerolinaceae; g_T78; s_	0,0002845	0,009619875	0,005372838
fb0b6d629072b328f6717febd59c8a0b	k_Bacteria; p_Proteobacteria; c_Epsilonproteobacteria; o_Campylobacterales; f_Campylobacteraceae; g_Arcobacter; s_cryaerophilus	0,00024911	0,001444479	0,003285478
fd2043bfaaa7506c0bdeca3d51703454	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosarcinaceae; g_Methanosarcina; s_mazei	0,00019053	0,002970585	0,004533108
18e93e5a40902529cc9f7fc3fbd12b71	K_Bacteria; p_Unioroflex; c_Anaerolineae; o_GCAU04; t_; g_; s_	0,00018805	0,000163569	0,000500729
edc9f3bf6811814f885105f7s1bb8c25	k Bacteria: p Verucomicrobia: c [Pedosphaerae]; o [Pedosphaerales]: f R4-41B: a : s	0.00017894	0.000031331	0,001353006
1613e0f4d58517632b3c8139209b7da7	k_Bacteria; p_Planctomycetes; c_Planctomycetia; o_Planctomycetales; f_Planctomycetaceae; g_Planctomyces; s_	0,00016114	1,23E-05	6.71F-05
ded64b574c09badc1b5094f04645073f	k_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_BA008; g_; s_	9,24E-05	0,000380536	0,001253673
0a932ce8aac9d042a579418219166903	k_Bacteria; p_WPS-2; c_; o_; f_; g_; s_	8,20E-05	0,000122775	0,000672465
0e04891f2b2ce287528c06739063a507	k_Bacteria; p_Armatimonadetes; c_SJA-176; o_RB046; f_; g_; s_	0	0,000123158	0,000485647
0e71d2ab88063c4e44848490936b4434	K_Bacteria; p_WS1; c_; o_; t_; g_; s_	0	2,80E-05	0,000153327
0e8f3b3ae8b19e8a045a222bbd2466a7	K_Bacteria; primicules; cCostilola k_Bacteria; pBacteriaidates; cRacteriaidates; f: a: e	0	0,000598336	0,001596128
0edf71682d5d213b3aca0e1efa230ade	k_Bacteria; p_Armatimonadetes; c_SJA-176; o_RB046; f_; g_; s	0	0.000439843	0,00017308
116638569a7f65a49e6676a7aca039c0	k_Bacteria; p_Firmicutes; c_Clostridia; o_Thermoanaerobacterales; f_; g_; s_	0	2,84E-05	0.0001557
0f51505ed801361dae8c4f65fdeeb3e9	k_Archaea; p_Euryarchaeota; c_Methanomicrobia; o_Methanosarcinales; f_Methanosaetaceae; g_Methanosaeta; s_	0	0,000230234	0,000710694
0f2952244e9bda4c46d9fcc971549af2	k_Archaea; p_Euryarchaeota; c_Methanobacteria; o_Methanobacteriales; f_Methanobacteriaceae; g_Methanobacterium; s_	0	0,000951817	0,002041983
0b6f4014c4d545892cfafc0068b5ed4e	k_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales; f_SB-1; g_; s_	0	3,97E-05	0,000217609
0fdd24ffce6e3af5b614c2dbbe463af2	K_Bacteria; p_himicutes; c_Clostridia; o_Clostridiales; f_Syntrophomonadaceae; g_Syntrophomonas; s_	0	0,000899891	0,001684713
UIE / 8CTCUTDE 1 517 53585C00ec906d14	и_очини, р_потеорастела, с_скалипартотеорастела, о_лапитопопарадея, i_элгорастегасеве; g_; s	0	4,/4E-05	0,000259661
104d10c98856b164ec0004fbaf252540	k_Bacteria; p_Firmicutes; c_Clostridia; o_MBA08; f_; g_; s_	0	2,00E-05	0,000109539
10dcedf49d95b911a4cba6b5fbdcaf3a	k_Bacteria; p_Bacteroidetes; c_Bacteroidia; o_Bacteroidales	0	4,64E-05	0,000176936
175ec29f53205446a571dc6b864c4f62	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_SHA-20; f_; g_; s_	0	0,000546668	0,001724775
10f62f90bb4f474fa4cfdfadea5ab5be	k_Bacteria; p_Chloroflexi; c_Chloroflexi; o_[Roseiflexales]; f_[Kouleothrixaceae]; g_Kouleothrix; s_	0	0,000179292	0,000982022
0d526e6aebad1f01f4d38b72d4ee6788	k_Bacteria; p_Verucomicrobia; c_Veruco-5; o_WCHB1-41; f_RFP12; g_; s_	0	0,0001431	0,00078379
175ea54a10495d30f1514081755f5143	rk_pakueria; p_spirochaetes; c_spirochaetes; o_spirochaetales; t_spirochaetaceae; g_Treponema; s_	0	0,00021799	0,000841807
uggnsbd32e932/220cbedacef64eb24	k Bacteria: p Planctomvoetes	0	0,000261467	0,001432115
0cd013b60fd23c4fb631cba6371ab219	k_Bacteria; p_Fimicutes	0	0.001409815	0.003117081
0c6de2135b4c0aa208437f2034f620c9	k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_; f_; g_; s_	0	0,000124444	0,00068161
136aadb8734a9edf2e4490fadee766c9	k_Bacteria; p_Actinobacteria; c_Acidimicrobilia; o_Acidimicrobiales; f_Microthrixaceae; g_; s_	0	3,68E-05	0,000201739
139fa36ec705fbdf79c1d9fcb197fdb5	k_Bacteria; p_GOUTA4; c_; o_; f_; g_; s_	0	3,98E-05	0,00021798
13cd14984ba6295874be87b702bad0df	K_bacteria; p_inermotogae; c_inermotogae; o_inermotogales; t_Thermotogaceae; g_Fervidobacterium; s_	0	0,000258887	0,001173479

Table S 2. Differentially abundant taxa between the control and comb-CeO₂ contaminated AD. Linear Discriminant Analysis Effect Size (LEfSe): all linear discriminant analysis [LDA] scores, >3). Taxonomy levels: (p), phylum; (c), class; (o), order; (f), family; (g), genus. Relative abundances of taxa that are increased in the control (green) and comb-CeO₂ contaminated (red) AD.

LDA Score	Taxa	Potential function			
3.4	Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales	The hydrogenotrophic order Methanomicrobiales includes Methanoculleus spp., Methanocorpusculum sp., and			
4.3	Bacteria	unciassinen wietninnotedinintene (tilballisulli 5010)			
3.7	Bacteria; Bacteroidetes	Macromolecules degradation, volatil fatty acid (VFA) and alcohol production. Higher population of <i>Bacteroidetes</i> phyla are associated with high hydrolytic activity in full-scale anaerobic digesters (Khan 2021)			
3.7	Bacteria; Bacteroidetes; Bacteroidia				
3.6	Bacteria; Chloroflexi; Anaerolineae; GCA004	Cellulose hydrolysis (Xia 2016), important for the granulation of sludge (Yamada and Sekiguchi 2009)			
4.3	Bacteria; Firmicutes	Macromolecules degradation, VFA and alcohol. Higher population of <i>Bacteroidetes</i> phyla can be associated with high hydrolytic activity in full-scale anaerobic digesters (Khan 2021)			
4.3	Bacteria; Firmicutes; Bacilli				
4.3	Bacteria; Firmicutes; Bacilli; Lactobacillales				
4.4	Bacteria; Firmicutes; Bacilli; Lactobacillales; Carnobacteriaceae; Trichococcus	Fermentative bacteria, detected in mesophilic hydrogen-producing consortia as bacteria that accompany hydrogen			
4.1	Bacteria; Firmicutes; Clostridia; Clostridiales; Acidaminobacteraceae	Potential syntrophic oxidizing bacteria (SAO) (Dyksma 2020, Lim 2020)			
3.3	Bacteria; Firmicutes; Clostridia; Clostridiales; Tissierellaceae	Potential syntrophic oxidizing bacteria (Dyksma 2020, Lim 2020)			
3.4	Bacteria; Firmicutes; Clostridia; Clostridiales; Tissierellaceae; Sedimentibacter	Potential syntrophic oxidizing bacteria (Dyksma 2020, Lim 2020)			
3.4	Bacteria; Firmicutes; Erysipelotrichi; Erysipelotrichales; Erysipelotrichaceae; Clostridium	Syntrophic butyrate producer (Vital 2014)			
3.3	Bacteria; Proteobacteria; Gammaproteobacteria	Macromolecules degradation, VFA and alcohol (Khan 2021)			
3.5	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales				
3.4	Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae				
3.3	Bacteria; Synergistetes; Synergistia; Synergistales; Thermovirgaceae	The increase in the relative abundance of <i>Synergistales</i> was found to be highly correlated with the increased rate of			
3.5	Bacterio; WWE1	methane production from on via nydrogenotrophic <i>drchded</i> (Nakasaki 2019)			
3.6	Bacteria; WWE1; Cloacamonae				
3.6	Bacteria; WWE1; Cloacamonae; Cloacamonales				
3.6	Bacteria; WWE1; Cloacamonae; Cloacamonales; Cloacamonaceae				
3.4	Bacteria; WWE1; Cloacamonae; Cloacamonales; Cloacamonaceae; W22	Syntrophic fatty-acid bacteria (Esquivel-Elizondo 2016) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis (acetate catabolism by methanogens)			
4.6	Archaea				
4.4	Archaea; Euryarchaeota				
3.6	Archaea; Euryarchaeota; Methanobacteria				

3.5	Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales	Hydrogenotrophic methanogens (Ziganshin 2016)
3.5	Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae	Hydrogenotrophic methanogens (Ziganshin 2016)
3.5	Archaea; Euryarchaeota; Methanobacteria; Methanobacteriales; Methanobacteriaceae; Methanobacterium	Hydrogenotrophic methanogens (Ziganshin 2016)
4.6	Archaea; Euryarchaeota; Methanomicrobia	
4.1	Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanocorpusculaceae	Hydrogenotrophic methanogens (Ziganshin 2016)
4.2	Archaea; Euryarchaeota; Methanomicrobia; Methanomicrobiales; Methanocorpusculaceae; Methanocorpusculum	Hydrogenotrophic methanogens (Ziganshin 2016)
4.1	Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales	Acetoclastic methanogens (Ziganshin 2016)
4.2	Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae	Acetoclastic methanogens (Ziganshin 2016)
4.4	Archaea; Euryarchaeota; Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanosarcina	Acetoclastic methanogens (Ziganshin 2016)
3.3	Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Marinilabiaceae	Saccharolytic bacteria (Hanreich 2013)
3.9	Bacteria; Chloroflexi	
3.7	Bacteria; Chloroflexi; Anaerolineae; Anaerolineales	
3.6	Bacteria; Chloroflexi; Anaerolineae; Anaerolineales; Anaerolinaceae	
3.7	Bacteria; Chloroflexi; Anaerolineae; Anaerolineales; Anaerolinaceae; 178	Hydrolytic or fermentative bacteria (Yamada 2005)
3.3	Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae	Synthrophic acetogenic bacteria (Gagen 2015)
3.8	Bacteria; Firmicutes; Erysipelotrichi; Erysipelotrichales; Erysipelotrichaceae; RFN20	
3.5	Bacteria; Spirochaetes; Spirochaetes	
3.5	Bacteria; Spirochaetes; Spirochaetes; Spirochaetales	
3.5	Bacteria; Spirochaetes; Spirochaetes; Spirochaetales; Spirochaetaceae	
3.5	Bacteria; Spirochaetes; Spirochaetes; Spirochaetales; Spirochaetaceae; Treponema	Homoacetogens, which consume H_2 and CO_2 to produce acetate. Alternative hydrogenotrophs (Li 2016)
3.5	Bacteria; Synergistetes; Synergistia; Synergistales; Dethiosulfovibrionaceae; Aminobacterium	Synthrophic acetogenic bacteria on aminoacids (Morris 2013)