Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Electron Supporting Information (ESI)

For

Molecular-Scale Determination of the Facet- and Adsorbent-

Dependent Phosphate Adsorption by Metal-Based Adsorbents

Xinfei Ge, Lijun Wang, and Wenjun Zhang*

College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

*To whom correspondence should be addressed.

Email: wenjunzhang@hzau.edu.cn

Number of Tables: 2

Number of Figures: 16

Number of Pages: 10

Compound	Raman shift (cm ⁻¹)	Assignment	
	225	A1g (Fe-O sys. str.)	
	245	Eg (Fe-O sys. bend)	
	296	E, (Fe-O sys. bend)	
Hematite	412	Eg (Fe-O sys. bend)	
	500	A1, (Fe-O sys. str.)	
	611	Eg (Fe-O sys. bend)	
	1320	2E _u (two-magnon scattering)	
	1230-1340	Amide III	
Peptide	1510-1570	Amide II	
	1600-1700	Amide I	

Table S1. Raman peak assignments of hematite and peptide.

Table S2. Values of f_{eq} and ΔG_b obtained from fitting the Friddle-Noy-De Yoreo model to DFS data, which are shown as mean \pm standard deviation (n = 3).

pH	KC1 (mM)	Interaction	$f_{eq}(pN)$	$\Delta G_{\rm b}$ (kJ/mol)
5	10	Ce-bound peptide	287.56±15.48	13.24±1.14
5	10	(1010)	243.21±11.32	10.7±0.84
5	10	(1120)	200.44±12.35	8.52±0.61
5	10	(0001)	150.78±9.87	6.61±0.42
5	10	Ce-bound peptide	287.56±15.48	13.24±1.14
7	10	Ce-bound peptide	231.67±10.21	10.2±0.84
9	10	Ce-bound peptide	188.58±8.64	7.78±0.73
5	10	(1010)	243.21±11.32	10.7±0.84
7	10	(1010)	201.36±11.21	8.86±0.58
9	10	(1010)	153.86±8.54	6.79±0.62
5	1	Ce-bound peptide	320.35±16.83	16.48±1.25
5	10	Ce-bound peptide	287.56±15.48	13.24±1.14
5	100	Ce-bound peptide	235.42±12.31	10.46±0.95
5	1	(1010)	295.48±13.56	13.21±1.01
5	10	(1010)	243.21±11.32	10.7±0.84
5	100	(1010)	188.76±6.98	8.42±0.36

Ac-CGGGDKDGDGTITTKE-NH₂

EF-loop I sequence

Figure S1. Chemical structure of peptide designed to bind Ce³⁺ ions, which consists of

N-terminal acetylation, spacer, EF-loop I sequence and C-terminal amidation.

Figure S2. Schematic representation of (a-d) the peptide decoration on mica surface using trimethoxysilylpropyl-diethylenetriamine (DAEAPTS) and glutaraldehyde linker, (e) the specific binding of Ce³⁺ to peptide and (f) the adsorption of P by Cebound peptide. The decoration method involves: (a) mica substrates cleaning; (b) generation of silane layer using DAEAPTS solution; (c) treatment with glutaraldehyde solution; (d) addition of targeted peptide.

Figure S3. Significance analysis of roughness of the $(10\overline{1}0)$, $(11\overline{2}0)$ and (0001) surfaces of hematite and Ce-bound peptide surface decorated on mica.

Figure S4. Peptide-decorated mica surface identified by (A) Raman mapping with (B) Raman characteristic vibration of Amide III (1230–1340 cm⁻¹).

Figure S5. AFM height imaging and the corresponding height analyses of the (A1-A3) $(10\overline{1}0)$, (B1-B3) $(11\overline{2}0)$ and (C1-C3) (0001) surfaces of hematite and Ce-bound peptide surface decorated on mica before and after exposure to a simple P solution (100 mg/L KH₂PO₄; pH 5; 10 mM KCl).

Figure S6. Quantification of adsorbed P and the corresponding Kelvin potential on (A) bare mica surface, (B) glutaraldehyde-decorated mica surface and (C) peptide-decorated mica surface with time after exposure to a simple P solution (100 mg/L KH₂PO₄; pH 5; 10 mM KCl).

Figure S7. Quantification of the Kelvin potential on bare mica surface, glutaraldehydedecorated mica surface and peptide-decorated mica surface before and after the introduction of 0.4 mM CeCl₃ (pH 5; 10 mM KCl).

Figure S8. Quantification of adsorbed phosphate and decreased Kelvin potential on

mica surface with (A) decoration of different concentrations of peptide (1-6 mg/L) and binding of constant concentration of CeCl₃ (0.4 mM) and (B) decoration of constant concentration of peptide (4 mg/L); and binding of different concentrations of CeCl₃ (0.0–0.6 mM); and (C-D) decoration of different concentrations of peptide (4–6 mg/L) and binding of different concentrations of CeCl₃ (0.4–0.6 mM).

Figure S9. (A) AFM height imaging of peptide deposited on the $(10\overline{1}0)$ surface of hematite, and (B) the corresponding adhesion mapping between phosphate group and $(10\overline{1}0)$ /peptide, indicating there is no significance difference in adhesion force for phosphate group-peptide without Ce³⁺ binding compared to phosphate group- $(10\overline{1}0)$.

Figure S10. Representative force distance curves between (A) bare tip or (B) phosphate

group-decorated tip and the $(10\overline{1}0)$ surface of hematite.

Figure S11. DFS of phosphate group binding to surfaces of (A) Ce-bound peptide decorated on mica, (B) $(10\overline{1}0)$, (C) $(11\overline{2}0)$ and (D) (0001) in a pH 5, 10 mM KCl solution.

Figure S12. DFS of phosphate group binding to surface of Ce-bound peptide decorated on mica in a 10 mM KCl solution with different pH values of (A) 5 (B) 7 and (C) 9.

Figure S13. DFS of phosphate group binding to $(10\overline{1}0)$ surface of hematite in a 10 mM

KCl solution with different pH values of (A) 5 (B) 7 and (C) 9.

Figure S14. DFS of phosphate group binding to surface of Ce-bound peptide decorated on mica in a pH 5 solution with different KCl concentrations of (A) 1 mM (B) 10 mM and (C) 100 mM.

Figure S15. DFS of phosphate group binding to $(10\overline{1}0)$ surface of hematite in a pH 5 solution with different KCl concentrations of (A) 1 mM (B) 10 mM and (C) 100 mM.

Figure S16. Significance analyses of adsorbed P on different adsorbent surfaces including $(10\overline{1}0)$ and Ce-bound peptide after exposure to the simple/complex P solution.