Supplementary Information for

Reactive halogen radicals in saline water promote photochemically-

assisted formation of manganese oxide nanosheets

Zhenwei Gao, Charlie Skurie, and Young-Shin Jun*

Department of Energy, Environmental and Chemical Engineering, Washington University in St.

Louis, St. Louis, Missouri 63130, United States

Address: One Brookings Drive, Campus Box 1180

E-mail: ysjun@seas.wustl.edu

Phone: (314) 935-4539

Fax: (314) 696-1223

http://encl.engineering.wustl.edu/

Environmental Science: Nano

Submitted: April 2022

Revised: July 2022

* To whom correspondence should be addressed

Summary:

11 pages, including 8 figures and 1 table.

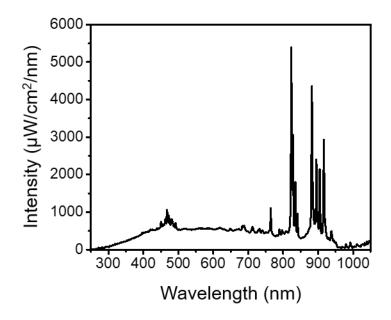
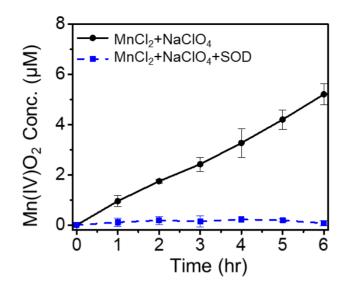
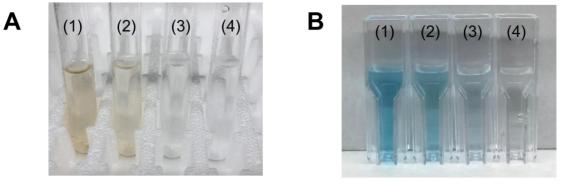
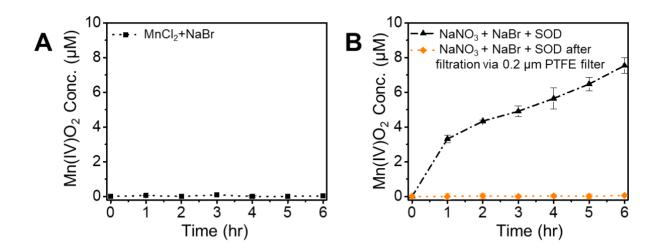
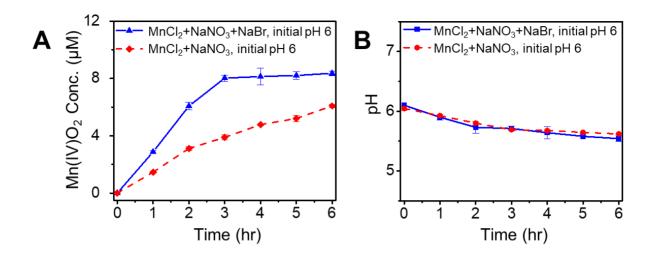
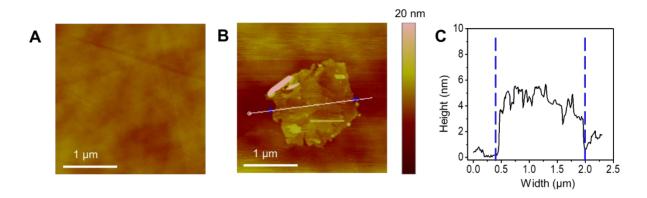
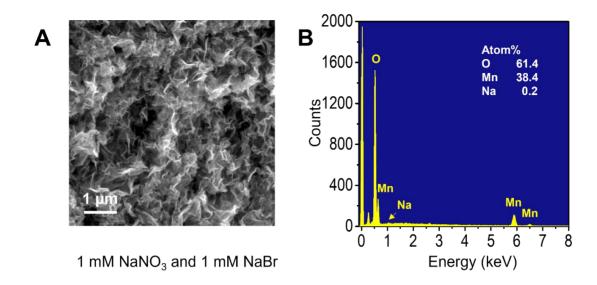




Figure S1. Light spectrum of xenon arc lamp over 250–1050 nm wavelengths.


Figure S2. Mn(IV)O₂ concentrations during 6 hr of photolysis of two solutions, one containing 0.1 mM MnCl₂ and 500 mM NaClO₄ at an initial pH of 9, and another containing 0.1 mM MnCl₂, 500 mM NaClO₄, and 0.5 μ M SOD at initial pH 9. Error bars represent standard errors of the data obtained from duplicate experiments. No Mn oxidation was observed in the presence of SOD, indicating that O₂⁻⁻ generated from photolysis of NaClO₄ can Mn²⁺(aq).


Mn oxide formation


Figure S3. Mn^{2+} oxidation by O₂⁻ or/and Br radicals. (A) Higher concentration of Mn oxide solids displays a darker yellowish color. (B) Mn oxide samples were mixed with LBB solution to quantify Mn oxide generation amount. Darker blue corresponds to a higher concentration of Mn oxide solids. Conditions of (1)–(5) are (1) 0.1 mM MnCl₂, 1 mM NaNO₃, and 1 mM NaBr; (2) 0.1 mM MnCl₂ and 1 mM NaNO₃; (3) 0.1 mM MnCl₂, 1 mM NaNO₃, 1 mM NaBr, and 0.5 μ M SOD; (4) 0.1 mM MnCl₂, 1 mM NaNO₃, 1 mM Na₂SO₄, and 0.5 μ M SOD; and (5) 0.1 mM MnCl₂, 1 mM NaNO₃, and 0.5 μ M SOD. MnO₂ solution color and LBB solution color of (5) are the same as (4) because of no Mn²⁺ oxidation for (4) and (5). Error bars represent standard errors of the data obtained from duplicate experiments.


Figure S4. (A) No Mn oxide solids formed during photolysis of solution containing 0.1 mM MnCl_2 and 1 mM NaBr. (B) Oxidized Mn concentrations during 6 hr photolysis of a solution containing 0.1 mM MnCl₂, 1 mM NaNO₃, 1 mM NaBr, and 0.5 μ M SOD, before and after filtration by a 0.2 μ m PTFE membrane for three times. Error bars represent standard errors of the data obtained from duplicate experiments.

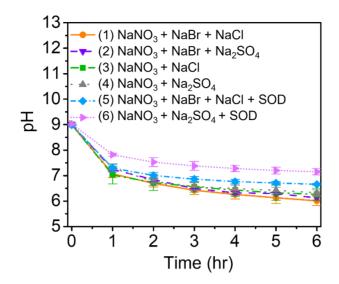

Figure S5. Mn²⁺ oxidation by O₂⁻⁻ or/and Br radicals at initial pH 6. (A) Mn(IV)O₂ concentrations and (B) pH values of during 6 hr of photolysis of two solutions, one containing 0.1 mM MnCl₂, 1 mM NaNO₃, and 1 mM NaBr at initial pH 6, and another containing 0.1 mM MnCl₂ and 1 mM NaNO₃ at initial pH 6. Error bars represent standard errors of the data obtained from duplicate experiments.

Figure S6. Thickness and lateral size of Mn oxide solids. Atomic force microscopy (AFM) images of (A) a clean Si wafer and (B) formed MnO₂ solids on a clean Si wafer. MnO₂ solids were formed after 6 hr of photolysis of a solution containing 0.1 mM MnCl₂, 1 mM NaNO₃, and 1 mM NaBr at initial pH 9. Then one droplet of the solution was dropped on a clean Si wafer and allowed to air-dry.

Figure S7. (A) Morphology and (B) elemental composition of Mn oxide solids formed under the condition of 0.1 mM MnCl₂, 1 mM NaNO₃, and 1 mM NaBr. Image and spectrum by ESEM-EDX.

Figure S8. pH values during 6 hr photolysis of solutions containing (1) 0.1 mM MnCl₂, 1 mM NaNO₃, 1 mM NaBr, and 500 mM NaCl; (2) 0.1 mM MnCl₂, 1 mM NaNO₃, 1 mM NaBr, and 166.7 mM Na₂SO₄; (3) 0.1 mM MnCl₂, 1 mM NaNO₃, and 500 mM NaCl; (4) 0.1 mM MnCl₂, 1 mM NaNO₃, and 166.7 mM Na₂SO₄; (5) 0.1 mM MnCl₂, 1 mM NaNO₃, 1 mM NaBr, 500 mM NaCl, and 0.5 μ M SOD; and (6) 0.1 mM MnCl₂, 1 mM NaNO₃, 166.7 mM Na₂SO₄, and 0.5 μ M SOD. Error bars represent standard errors of the data obtained from duplicate experiments.

Oxidation state	Mn oxide sample	Mn 2p _{3/2} Binding energy (eV)	References
Mn(II)	Mn(II) in δ-MnO ₂	640.8	Jung et al. (2017) ¹
	Mn(II) in MnO	640.8	Junta and Hochella (1994) ²
	Mn(II) in MnO	641.0	Di Castro and Polzonetti (1989) ³
Mn(III)	Mn(III) in γ-MnOOH	641.7	Junta and Hochella (1994) ²
	Mn(III) in γ-MnOOH	641.7	Jung and Jun (2016) 4
	Mn(III) in Mn ₂ O ₃	641.8	Ramesh et al. (2008) ⁵
	Mn(III) in δ-MnO ₂	641.8	Jung et al. (2017) ¹
	Mn(III) in Mn ₂ O ₃	641.9	Di Castro and Polzonetti (1989) ³
Mn(IV)	Mn(IV) in MnO ₂	642.0	Junta and Hochella (1994) ²
	Mn(IV) in MnO ₂	642.2	Oku et al. (1975) ⁶
	Mn(IV) in δ -MnO ₂	642.2	Jung et al. (2017) ¹
	Mn(IV) in MnO ₂	642.3	Ramesh et al. $(2008)^5$

Table S1. Summary of XPS references for Mn(II), Mn(III), and Mn(IV).

Supplemental References

- 1. H. Jung, T. S. Chadha, Y. Min, P. Biswas and Y.-S. Jun, Photochemically-assisted synthesis of birnessite nanosheets and their structural alteration in the presence of pyrophosphate, *ACS Sustainable Chem. Eng.*, 2017, **5**, 10624-10632.
- 2. J. L. Junta and M. F. Hochella Jr, Manganese(II) oxidation at mineral surfaces: A microscopic and spectroscopic study, *Geochim. Cosmochim. Acta*, 1994, **58**, 4985-4999.
- 3. V. Di Castro and G. Polzonetti, XPS study of MnO oxidation, *J. Electron Spectrosc. Relat. Phenom.*, 1989, **48**, 117-123.
- 4. H. Jung and Y.-S. Jun, Ionic strength-controlled Mn (hydr)oxide nanoparticle nucleation on quartz: effect of aqueous Mn(OH)₂, *Environ. Sci. Technol.*, 2016, **50**, 105-113.
- 5. K. Ramesh, L. Chen, F. Chen, Y. Liu, Z. Wang and Y.-F. Han, Re-investigating the CO oxidation mechanism over unsupported MnO, Mn₂O₃ and MnO₂ catalysts, *Catal. Today*, 2008, **131**, 477-482.
- 6. M. Oku, K. Hirokawa and S. Ikeda, X-ray photoelectron spectroscopy of manganese oxygen systems, *J. Electron Spectrosc. Relat. Phenom.*, 1975, **7**, 465-473.