Heterogeneous reaction of toluene/NO₂/O₃ on α-Fe₂O₃ nanoparticles:

The impacts of O₃, light illumination and relative humidity on the N-containing

organic compounds (NOC) formation

Xiang He^{1,2,3,*}, Zhi-Cheng Ma^{1,2,3}, Xi Xi^{1,2,3}, Aiyilaiti Kudesi^{1,2,3}, Juan-Mei Wang^{1,2,3}

¹ College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China

² Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830017,

PR China

³ Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Xinjiang University, Urumqi 830017, PR China

*Correspondence and requests for materials should be addressed to X. He (xianghe@xju.edu.cn)

Fig. S1. The schematic diagram of the DRIFT reaction system. Note: 1. High-pure air cylinder; 2. Trace gas generator; 3. Mass flow meter; 4. Water vapor generator; 5. Reaction chamber; 6. Xenon lamp generator; 7. Hygrometer.

Fig. S2. TEM images of the α -Fe₂O₃ nanoparticles.

Fig. S3. Particle size distributions of the α -Fe₂O₃ nanoparticles.

Fig. S4. Products after the heterogeneous reaction of toluene/NO₂ with α -Fe₂O₃ nanoparticles observed by (a) C 1s and (b) N 1s regions by XPS.

Fig. S5. In situ DRIFTS spectra of heterogeneous reaction of toluene with α -Fe₂O₃ nanoparticle as a function of time under dark condition. Conditions: [toluene] ~7.4×10¹⁴ molecules · cm⁻³. The Y-axis stands for absorbance.

Fig. S6. In situ DRIFTS spectra of heterogeneous reaction of NO₂ with α -Fe₂O₃ nanoparticle as a function of time under dark condition. Conditions: [NO₂] ~7.4×10¹⁴ molecules cm⁻³. The Y-axis stands for absorbance.

Fig. S7. Products after the heterogeneous reaction of toluene/NO₂/O₃ with α -Fe₂O₃ nanoparticles observed by (a) C 1s and (b) N 1s regions by XPS.

Fig. S8. Comparison of the final DRIFTS spectra for α -Fe₂O₃ after the reactions with toluene/NO₂ and toluene/NO₂/O₃. Conditions: [toluene] ~7.4×10¹⁴ molecules cm⁻³, [NO₂] ~7.4×10¹⁴ molecules cm⁻³, [O₃] ~7.4×10¹⁴ molecules cm⁻³ and RH~0%.

•

Fig. S9. The integrated absorbance of R-ONO species formed on the surface of α -Fe₂O₃ nanoparticles after reaction of toluene/NO₂ and toluene/NO₂/O₃ in the dark and light conditions.

Fig. S10. DRIFTS spectra of the heterogenous reactions of toluene/NO₂/O₃ with α -Fe₂O₃ under simulated irradiation during the dehumidifying (a) and dehumidifying (b) processes. The Y-axis stands for absorbance.