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Table S1. Description of ashes collected following the 2020 fire season. Samples analyzed by 
TEM are highlighted in gray. 

Sample 
number

Sampling 
date Ash Source Sample description

Lightning Complex Fire

A11 10/7/2020 Structure/Residential Burned shed

A12 10/7/2020 Structure/Residential Burned shed - replicate

A13 10/7/2020 Vehicle Burned trailer - south end

A14 10/7/2020 Vehicle Burned trailer - north end

A21 10/7/2020 Structure/Residential Back room

A22 10/7/2020 Structure/Residential Front room

A23 10/7/2020 Structure/Residential/kitchen Kitchen area

A24 10/7/2020 Structure/Foundation Dark green material on foundation (Cu arsenate?)

A25 10/7/2020 Structure/Residential Tool shed - separated from house

A91 10/15/2020 Structure/Residential Hot tub / spa

A92 10/15/2020 Structure/Residential Red soil - artificial wood from deck

A93 10/15/2020 Structure/Residential/kitchen Kitchen area, copper wires

A94 10/15/2020 Structure/Garage Garage-1, electronics, copper wires, other blue material, misc. ash

A95 10/15/2020 Structure/Garage Garage-2, metal wires, misch ash

A96 10/15/2020 Structure/Residential Other parts of house, some electronics (Cu), some CCA treated wood.

A121 10/15/2020 Structure/Residential Burned residence - some copper wire, mostly white ash (wallboard)

A122 10/15/2020 Structure/Residential/paint Studio - some burned paint (acrylic and watercolor) blues, yellow, red

A123 10/15/2020 Structure/Residential Studio - misc. ash, some wires

A124 10/15/2020 Structure/Residential/paint Shed - house paint, some wires

A125 10/15/2020 Structure/Foundation Olive green ash from foundation, some yellow crystals replacing 
wallboard

A131 10/16/2020 Structure/vehicle Burned barn - redwood, galvanized steel, tires, Cu wire

A132 10/16/2020 Structure/vehicle Burned tool storage shed - tires, white & black ash, misc. bags & 
containers

A133 10/16/2020 Structure/Residential Burned farm worker residence - white & black ash; mattress, sink, 
refrigerator

A134 10/16/2020 Vehicle Burned boat & trailer - fiberglass, aluminum, tires

A135 10/16/2020 Structure/vehicle Burned farm workshop - tools, Cu wire, tractor, tires; some blue 
pigments 2 shades), black, white, red & brown ash; white powder

A136 10/16/2020 Vehicle Burned trailer (for 2 horses?) - tires, Cu wire, aluminum, book 
(manual?)

A137 10/16/2020 Structure/Residential Burned farmworker residence - black, white & brown ash

A138 10/16/2020 Structure/Residential Burned 1-story residence (occupied) -- white, gray & red ash; burned 
guns

A139 10/16/2020 Structure/Residential Burned 2-story residence (unoccupied) --   white, brown & red ash 
(kitchen)

A141 10/16/2020 Structure/Commercial North end of store - gray & white ash, fiberglass, dry wall, beverage 
containers

A142 10/16/2020 Structure/Commercial/Electronics South end of store - Electronics (PC and calculator?), Cu wires, white 
& gray ash

A143 10/16/2020 Structure/Commercial Storage building - Gray & white ash, Cu wiring (2 shades of green)

A31 10/8/2020 Vegetation Burned chaparral (charred manzanita and some pine) site on gentle 
slopes; serpentinite unit

A51 10/8/2020 Vegetation Burned chapparal (manzanita), white ash with some black ash; 
sandstone unit

A81 10/8/2020 Vegetation Burned oak, white ash with some black ash; bedrock undetermined



North Complex Fire
AD Atmospheric deposition Ash deposited on a car windshield

NC-01 10/7/2020 Vegetation White ash from edge of Lake Madrone (west shore)

NC01-A 10/7/2020 Vegetation White ash appears to be remnants of dead tree.  Very light and fluffy.  

NC01-B 10/7/2020 Vegetation Black ash from surface of soil. Appears to be duff layer  

NC01-C 10/7/2020 Soil
Scraped ash away from surface soil and collected 0-2 cm.  Soil was a 
clay rich, red-orange color, very dense.  We could not dig down with 
the plastic scoop (dry clay)

NCWZ-02 10/7/2020 Structure/Residential House “ash” collected from bedroom or living room area. Removed 
large tile material and collected from below large pieces

NC04-A 10/7/2020 Structure/Garage White ash from auto garage containing many tools.  Collected from a 
large pile of sifted ash in center of garage 

NC04-B 10/7/2020 Vehicle Composite car ash

NC04-C 10/7/2020 Vehicle Tire material (collected in glass for organic analysis)

NC06-A 10/7/2020 Soil Soil 0-2 cm

NC06-B 10/7/2020 Soil Soil 10-15 cm

NC06-C 10/7/2020 Vegetation Ash from soil surface  

NC-08 10/7/2020 Structure/Residential Composite sample of cabin built in 1930’s era 

NC-09 10/7/2020 Vehicle Golf cart ash composite

NC10-A 10/7/2020 Structure/Residential Cabin. Composite sample collected from inside foundation.

NC10-B 10/7/2020 Soil Surface soil/ash collected 5 ft outside of foundation, adjacent to 
building

NC11-A 10/7/2020 Vehicle Car ash, composite from ground, early 2000’s Ford Mustang

NC11-B 10/7/2020 Vehicle Car ash, interior

NC12-A 10/7/2020 Vegetation Ash from pine forest. High severity. Above reservoir.   

NC12-B 10/7/2020 Soil Soil 0-2 cm

NC12-C 10/7/2020 Soil Soil 10-15cm



Soil description

Soils in the North Complex Fire area

Most soils around Madrone Lake are in the Islandbar series (primarily decomposed granite) 

94

NCWZ 12: Soil classification 209 – ISLANDBAR SERIES 

The Islandbar series consists of very deep, somewhat excessively drained soils that formed 

in residuum and colluvium from coarse grained intrusive igneous rocks, mainly trondhjemite or 

quartz diorite. Islandbar soils are on ridge tops and side slopes on granitic Sierra Nevada. Slopes 

range from 2 to 70%. The mean annual precipitation is about 1473 mm and the mean annual 

temperature is about 13 ºC.

TAXONOMIC CLASS: Coarse-loamy, mixed, active, mesic Typic Dystroxerepts

TYPICAL PEDON: Islandbar sandy loam, on a northwest facing 5 percent slope under a cover 

of conifers, hardwoods, and shrubs at an elevation of 677 m. When described on 7/22/1998, the 

soil was dry to a depth of 91 cm and was slightly moist from 91 to 183 cm. (Colors are for dry soil 

unless otherwise noted).

Oi--0 to 5 cm; slightly decomposed plant material; abrupt smooth boundary.

A1--5 to 13 cm; light brownish gray (10YR 6/2) sandy loam, dark grayish brown (10YR 4/2) 

moist; 12% clay; weak fine subangular blocky parting to weak fine granular structure; slightly 

hard, very friable, nonsticky, nonplastic; many very fine and fine roots; many very fine and fine 

irregular pores; 5 percent mica flakes; 5 percent rounded gravel; moderately acid, pH 6.0 by 

Hellige-Truog; abrupt smooth boundary.

NCWZ 1, NCWZ 6, and NCWZ 10B: Soil classification 202 – Holland Series  



The Holland series consists of very deep, well drained soils that formed in material 

weathered from granitic rock. Holland soils are on foothills and low mountains and have slopes of 

2 to 75%. The mean annual precipitation is about 940 mm and the mean annual air temperature is 

about 13 ºC. 

TAXONOMIC CLASS: Fine-loamy, mixed, active, mesic Ultic Haploxeralfs 

TYPICAL PEDON: Holland sandy loam - on an east facing, linear, slope of 25% under ponderosa 

pine, incense cedar, and mountain misery at an elevation of 1145 m. (Colors are for dry soil unless 

otherwise noted. When described August 24, 1977, the soil was slightly moist throughout). 

Oi--0 to 5 cm; fresh and decomposing pine needle and leaf litter. 

A1--5 to 13 cm; brown (10YR 5/3) sandy loam, very dark grayish brown (10YR 3/2) moist; 17% 

clay; strong fine granular structure; soft, very friable, slightly sticky and slightly plastic; many 

very fine and fine roots; many very fine interstitial, common fine tubular pores; moderately acid 

(pH 5.7); abrupt wavy boundary. (5 to 15 cm thick)

NCWZ 13: Soil classification – Hartsmill Series

The Hartsmill series consists of very deep, well drained soils that formed in colluvium and 

residuum from metavolcanic rocks, mainly greenschist. Hartsmill soils are on ridge tops and side 

slopes on metamorphic Sierra Nevada foothills. Slopes range from 2 to 90%. The mean annual 

precipitation is about 43 inches, (109 cm) and the mean annual temperature is about 14 ºC.

TAXONOMIC CLASS: Loamy-skeletal, mixed, superactive, thermic Ultic Palexeralfs

TYPICAL PEDON: Hartsmill gravelly loam, on a southwest facing 46 percent slope under a 

cover of whiteleaf manzanita (Arctostaphylos manzanita), toyon (Heteromeles arbutifolia), 

interior live oak (Quercus wislizeni), California black oak (Quercus kelloggii), Pacific poison oak 

(Toxicodendron diversilobum) and very scattered ponderosa pine (Pinus ponderosa) at an 



elevation of 1,840 feet, (561 m). When described on 7/27/1999, the soil was dry throughout. 

(Colors are for dry soil unless otherwise noted).

Oi--0 to 3 cm; slightly decomposed plant material; abrupt smooth boundary.

A--3 to 8 cm; reddish brown (5YR 4/4) gravelly loam, dark reddish brown (5YR 3/3), moist; 14% 

clay; strong fine granular structure; soft, very friable, nonsticky, slightly plastic; common very fine 

roots; many very fine irregular pores; 30 percent angular gravel; slightly acid, pH 6.5 by Hellige-

Truog; abrupt smooth boundary. 5 to 8 cm thick).



Figure S1. Land use classification for the North Complex fire and approximate locations of ash 
samples.



Figure S2. Land use classification for the LNU Lightning Complex fire and approximate locations 
of ash samples.



 

Figure S3. Collection of residential structure ash and soil samples



Synthesis of Goethite

Goethite was synthesized using an aqueous aging of ferrihydrite modified method after 

Schwertmann et al. (1985) 51. Sodium hydroxide solution (5 M, 120 ml) was added dropwise to an 

iron (III) nitrate solution (1 M, 200 ml). The resulting ferrihydrite suspension was basified by 

dropwise addition of sodium hydroxide (5 M) until pH 12 was achieved. The bottle was then closed 

and heated in a furnace for 3 days. The initial temperature was 50 °C, however, this was increased 

to 60 °C after the first day of the reaction. The product was recovered by centrifugation. The 

product was then washed four times and let to dry.

Synthesis magnetite and maghemite 

Magnetite nanoparticles were synthetized by aqueous coprecipitation of ferric and ferrous 

iron in an anaerobic chamber in strict anaerobic conditions in pH 12 deionized water. Magnetite 

nanoparticles were then vacuum-dried on 0.2 µm cellulose filter and washed with O2-free 

deionized water. Average diameter is 10.0 ± 1.4 nm, determined by High Resolution Transmission 

Electron Microscopy (HR-TEM). X-ray diffraction (XRD) was used to check the purity of the 

phase, it indicated a pure magnetite phase with a mean coherent domain size of 12.7 nm.

Maghemite nanoparticles were obtained by heating the previously described nanoparticles 

at 200°C during one night in strict anaerobic conditions. XRD indicated a pure maghemite phase 

with a 11.4 nm mean coherent domain size and an average diameter size of 10.3 ± 2.7 nm (HR-

TEM).

Synthesis of Hematite

Hematite was synthesized by aqueous precipitation of ferric iron. Sodium hydroxide 

solution (5 M) was added dropwise to an iron (III) nitrate solution (1 M) until pH 7 was achieved. 

The resulting hematite solution was washed with Milli-Q water several times. The pH is then 



adjusted again to 7 using NaOH (1M). The bottle was then closed and heated in a furnace at 80 

°C. The product was recovered by centrifugation. The product was then washed four times and let 

to dry. 

Figure S4. Iron K-edge XANES spectra of the model compound used to fit the iron K-edge 
XANES spectra of the fire ashes.



Table S2. Spectral weight of the different iron oxide phases and oxidation states together with the 
best fit error

Iron oxidation state Fe(III)/Fe(II) Fe(0)
Iron species Ferrihydrite Maghemite Goethite Hematite Fe(III)chlorite Fe(III)nitrate Fe(III)sulfate Magnetite FeS Fe(II)chlorite FeO Fe(II)sulfate Elemental Fe

A11 25 ± 3 75 ± 3 0 0 0 0 0 0 0 0 0 0 0 0.021
A12 0 84 ± 2 0 0 0 0 16 ± 2 0 0 0 0 0 0 0.053
A13 65 ± 7 0 0 0 0 0 0 35 ± 6 0 0 0 0 0 0.039
A14 21 ± 4 26 ± 2 0 0 16 ± 1 0 0 37 ± 4 0 0 0 0 0 0.015
A21 51 ± 2 35 ± 2 0 0 0 0 0 0 0 0 0 0 14 ± 1 0.030
A22 0 53 ± 2 23 ± 2 0 0 0 0 0 14 ± 1 10 ± 1 0 0 0 0.018
A23 63 ± 4 14 ± 4 0 0 0 0 0 0 13 ± 1 0 0 0 10 ± 1 0.028
A24 0 78 ± 1 0 0 22 ± 1 0 0 0 0 0 0 0 0 0.034
A25 0 69 ± 3 0 0 165 ± 1 0 0 15 ± 2 0 0 0 0 0 0.022
A91 0 0 19 ± 2 0 0 0 0 81 ± 2 0 0 0 0 0 0.041
A92 0 90 ± 1 0 0 0 0 0 0 0 10 ± 1 0 0 0 0.049
A93 0 15 ± 2 0 0 0 0 0 46 ± 2 15 ± 1 23 ± 1 0 0 0 0.011
A94 0 47 ± 2 0 0 0 0 0 53 ± 2 0 0 0 0 0 0.029
A95 13 ± 3 38 ± 3 0 0 0 0 0 50 ± 2 0 0 0 0 0 0.027
A96 0 35 ± 3 0 0 0 0 0 24 ± 4 0 0 15 ± 1 26 ± 1 0 0.040
A121 0 35 ± 3 0 0 0 0 0 48 ± 3 0 17 ± 1 0 0 0 0.029
A122 0 40 ± 2 0 0 0 0 0 44 ± 3 0 0 0 16 ± 1 0 0.015
A123 49 ± 3 30 ± 3 0 0 0 0 0 0 0 10 ± 1 0 0 10 ± 1 0.020
A124 0 50 ± 1 0 50 ± 1 0 0 0 0 0 0 0 0 0 0.006
A125 0 51 ± 2 0 0 0 0 0 31 ± 2 18 ± 1 0 0 0 0 0.019
A131 21 ± 2 50 ± 2 0 0 0 0 0 29 ± 1 0 0 0 0 0 0.010
A132 0 38 ± 4 0 0 10 ± 1 0 0 52 ± 3 0 0 0 0 0 0.041
A133 0 45 ± 2 0 0 10 ± 1 0 0 32 ± 3 0 0 0 13 ± 1 0 0.015
A134 0 53 ± 2 26 ± 2 0 0 0 0 0 21 ± 1 0 0 0 0 0.024
A135 0 46 ± 2 36 ± 2 0 0 0 0 0 19 ± 1 0 0 0 0 0.027
A136 0 21 ± 2 44 ± 1 0 0 0 0 35 ± 2 0 0 0 0 0 0.017
A137 0 57 ± 3 0 0 0 0 0 32 ± 3 0 11 ± 1 0 0 0 0.014
A138 0 34 ± 2 20 ± 2 0 0 0 0 46 ± 2 0 0 0 0 0 0.029
A139 0 44 ± 2 0 0 0 0 0 45 ± 3 0 0 0 12 ± 1 0 0.018
A141 0 0 0 0 0 0 0 65 ± 1 22 ± 1 23 ± 1 0 0 0 0.011
A142 25 ± 3 26 ± 3 0 0 0 0 0 27 ± 3 13 ± 1 0 0 10 ± 1 0 0.013
A143 42 ± 2 14 ± 2 0 0 0 0 0 35 ± 2 10 ± 1 0 0 0 0 0.011
A031 17 ± 3 33 ±  4 0 0 0 0 0 33 ± 4 0 17 ± 2 0 0 0 0.040
A051 0 44 ± 2 0 0 13 ± 1 0 0 28 ± 2 0 15 ± 1 0 0 0 0.013
A081 0 43 ± 2 0 0 10 ± 1 0 0 47 ± 1 0 0 0 0 0 0.012
AD 0 33 ± 3 0 0 0 0 0 57 ± 3 0 0 0 10 ± 1 0 0.025

NC-1 0 32 ± 3 0 18 ± 2 0 0 0 50 ± 2 0 0 0 0 0 0.029
NC-1A 0 50 ± 2 33 ± 1 0 0 0 0 17 ± 2 0 0 0 0 0 0.022
NC-1B 24 ± 5 20 ± 4 0 31 ± 4 0 0 0 25 ± 5 0 0 0 0 0 0.038
NC-1C 16 ± 7 43 ± 3 0 25 ± 4 15 ± 2 0 0 0 0 0 0 0 0 0.033
NC-2 33 ± 3 0 0 0 0 0 0 31 ± 4 0 0 21 ± 1 15 ± 1 0 0.020

NC-4B 20 ± 2 0 0 0 0 0 0 63 ± 2 17 ± 1 0 0 0 0 0.018
NC-4C 0 34 ± 2 0 31 ± 3 35 ± 1 0 0 0 0 0 0 0 0 0.028
NC-6A 0 34 ± 2 0 31 ± 3 35 ± 1 0 0 0 0 0 0 0 0 0.028
NC-6B 0 26 ± 2 0 48 ± 3 25 ± 1 0 0 0 0 0 0 0 0 0.015
NC-6C 0 29 ± 3 16 ± 5 35 ± 6 0 0 0 21 ± 2 0 0 0 0 0 0.037
NC-8 0 60 ± 3 0 0 0 0 0 29 ± 4 0 0 0 11 ± 1 0 0.038
NC-9 0 36 ± 3 0 0 0 0 0 54 ± 4 0 10 ± 2 0 0 0 0.044

NC-10A 15 ± 3 39 ± 4 0 0 0 0 0 33 ± 4 0 0 0 13 ± 1 0 0.034
NC-10B 0 25 ± 3 0 0 0 0 0 58 ± 4 0 0 0 18 ± 1 0 0.042
NC-11A 0 0 0 0 0 0 0 48 ± 1 17 ± 2 0 20 ± 3 16 ± 2 0 0.045
NC-11B 0 0 0 0 0 0 0 26 ± 1 21 ± 1 0 53 ± 1 0 0 0.016
NC-12A 0 0 0 0 0 11 ± 1 0 58 ± 2 0 30 ± 1 0 0 0 0.018
NC-12B 19 ± 6 16 ± 2 42 ± 4 0 0 0 0 0 0 23 ± 1 0 0 0 0.008
NC-12C 0 25 ± 1 54 ± 1 0 0 0 0 0 0 21 ± 1 0 0 0 0.009

Fe(III) Fe(II)
 χ2



6.

Figure S5. Iron phases as a function of ash color



Figure S6. Percentage distribution of Fe species in ash samples determined by linear combination fitting analysis of Fe K-edge XANES 
(a). Estimated relative percentage of Fe oxidation states based on individual components determined from linear combination of XANES 
(b). Veg: vegetation, St: structure, Veh: vehicle, and AD: atmospheric deposition.



Figure S7. Iron phases as a function of ash source





Figure S8. Iron speciation in ashes generated as a result of fire at the wildland-urban interface (a) maghemite, (b) magnetite, (c) wüstite, 
and (d) zero valent iron. Veg: vegetation, St: structure, Veh: vehicle, and AD: atmospheric deposition.
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