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S1 Percentage of growth rate inhibition assay

The optical density of Chlorella pyrenoidesa (C. pyrenoidesa) at wavelength of
683 nm (ODgg3) was measured at 0 h and 96 h by a ultraviolet—visible
spectrophotometer. The average specific growth rate of C. pyrenoidesa was calculated
using the following equation [1]. Then, according to the average specific growth rate,
the percentage of growth rate inhibition in each parallel treatment sample was

calculated by equation [2]:

lan - InX;
p_j=————— (day™
G-t [1]
¢~ Hr
%I, = x 100
He e [2]
where:

Hi-j: average specific growth rate from time i to time j; Xi: value of ODgg; at time i;
%j: value of ODgg; at time B .. percentage of average specific growth rate inhibition;

Hc: mean average specific growth rate value (n) in the control group; 7: average

specific growth rate in the treatment group replicates.
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S2 Determination of pigments

C. pyrenoides (10 mL) was centrifuged at 9000 rpm for 10 min, and then the
residues were suspended in 90% ethyl alcohol (10 mL). The obtained samples were
kept in the dark at 4 °C for 24 h before centrifugal treatment at 12000 rpm for 10 min.
The optical density (OD) of the supernatants was measured at 469 nm, 644 nm, 665 nm
and 750 nm to determine the chlorophyll a, chlorophyll b and carotenoid contents. The
chlorophyll a, chlorophyll b and carotenoid contents were calculated using the
following formulas [3], [4] and [5], respectively.

Chlorophyll a (mg/L) = C, = 13.95 X (Ags5-A750)-60.88 X (Ag44-A750) ----- [3]

Chlorophyll b (mg/L) = C, =24.96 X (Ag4a-A750)-7.32 X (Ages5-A7s0) ----- [4]

Carotenoid (mg/L) = [1000 X (Asgo-A750)-2.05C,-114.8C;]/248 -—---[5]
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S3 Determination of membrane damage

Fluorescein diacetate (FDA) was used as a fluorescent probe to measure cell
membrane permeability. After 96 h of exposure, algal cells were collected and
centrifuged at 9000 rpm at 4 °C for 10 min. After removing the supernatant, the algal
cells were collected and washed with BG11 medium three times. The samples were
then incubated with 10 uM FDA in the dark at 37 °C for 30 min and rinsed with BG11
medium three times. Finally, the fluorescence intensity was measured by a fluorescence

spectrophotometer (F 2700, Japan).
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S4 Determination of ROS

2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) was used to detect ROS.
DCFH-DA is hydrolyzed by intracellular esterase to produce DCFH. In the presence of
ROS, DCFH is oxidized to the fluorescent substance DCF. After 96 h of exposure, algal
cells were collected and centrifuged at 9000 rpm at 4 °C for 10 min. After removing the
supernatant, the algal cells were collected and washed with BG11 medium three times.
The samples were then incubated with 10 uM FDA in the dark at 37 'C for 30 min
and rinsed with BG11 medium three times. Finally, the level of ROS was measured by

a microplate reader (Spectra Max Plus384, USA).
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SS Transcriptomic Analysis

C. pyrenoidesa cells in the CK, AgNPs, HemNPs, MX1 and MX2 groups were
separated from the supernatants by centrifugation (3000 rpm, 15 min). Total RNA was
extracted from the C. pyrenoidesa cells using TRIzol® Reagent (Invitrogen, Carlsbad,
CA, USA). Then, RNA-seq transcriptome libraries were constructed and sequenced
with the assistance of Majorbio Biopharm Technology Co., Ltd. mRNA can be isolated
from total RNA by A-T base pairing between magnetic beads with oligo (dT) and poly-
(A) attachments. The messenger RNA was randomly broken by adding fragmenting
buffer, and small fragments were isolated by magnetic-bead screening. Using the
mRNA as the template, one-stranded cDNA was synthesized by inversion, and then
two-stranded ¢cDNA synthesis was carried out to form a stable double-stranded
structure. End-repair mixture was added to provide the double-stranded cDNA with a
flat end for sequencing on the Illumina platform. The sequences were annotated in
seven public databases (NR, NT, PFAM, SWISS-PROT, KOG, KEGG and GO) for
subsequent functional interpretation and metabolic pathway analysis. FPKM
(fragments per kilobases per million reads) values were used to normalize the transcript
abundances. Genes with fold changes > 2 and p values < 0.05 were identified as
significantly differentially expressed genes (DEGs) between two groups. The DEGs (p-
adjust < 0.05 & |log2 FC| >= 1) were analyzed using the differential analysis software

DESeq2 (version 1.38.0).
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S6 Metabolomic Analysis

After 96 h of exposure, different groups of C. pyrenoidesa cells were collected by
centrifugation for metabolomic analysis. The cells were then washed three times with
PBS buffer. Subsequently, the washed cell samples were stored at —80 °C until further
analysis. Metabolomic analysis was performed by liquid chromatography—mass
spectrometry (LC-MS, ExionLC AD System, ABSCIEX-Triple TOF 5600, AB
SCIEX, USA). The specific steps were as follows. Each algal sample (50 mg) was
mixed with 20 pL of internal standards (L-2-chloro-phenylalanine dissolved in
acetonitrile, 0.3 mg/mL) and added to 400 pL methanol/water (4:1, v/v). Subsequently,
the mixture was by a high-throughput tissue-crushing apparatus (Wonbio-96c,
Shanghai Wanbai Biotechnology Co., Ltd., China) at -20 °C and 50 Hz for 6 min and
vortexed. The obtained mixtures were treated by ultrasonic solvent extraction (40 kHz)
at 5 °C for 30 min and then held at -20 °C for 30 min. The supernatants containing
extracted metabolites were obtained by centrifugation at 13000 g and 4 °C for 15 min
prior to drying by nitrogen flushing. The collected mixtures were reconstituted in
acetonitrile/water (1:1, v/v) and analyzed by liquid chromatography—mass spectrometry
(LC-MS, ExionLC AD System, ABSCIEX-Triple TOF 5600, AB SCIEX). Samples
were injected into BEH C18 columns (100 mm x 2.1 mm i.d., 1.7 um; Waters, Milford,
USA) using a UPLC-TripleTOF system with mobile phase A (0.1% formic acid) and
mobile phase B (acetonitrile/isopropanol, 1:1, 0.1% formic acid). The flow rate was

0.40 mL/min, the injection volume was 10 pL, and the column temperature was 40 °C.
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Mass spectrometry spectra of the samples were collected with positive (ESI+) and
negative (ESI-) ion scanning modes and the ion spray voltage. The original LC - MS
data were normalized and transformed, and then unsupervised principal component
analysis (PCA) and orthogonal projection latent structure discriminant analysis (OPLS-
DA) were carried out. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and
the human metabolome database (HMDB) were used for metabolic pathway analysis
and compound classification. Metabolites with significant differences between two
groups were screened by t tests. Metabolites with p < 0.05 and VIP > 1 were considered

significantly different between two groups.
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Fig. S1 (A) TEM of HemNPs. (B) X-Ray Powder Diffraction of HemNPs. (C-D)

X ray photoelectron spectrum of HemNPs: General layout (C); Fe 2p (D).
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Fig. S2 Transmission electron microscopy (TEM) images of (A) AgNPs, (B)

HemNPs, (C) MX1 and (D) MX2 in BG11 medium.
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Fig. S3 SEM micrograph and corresponding EDS spectra for the composites of
AgNPs and HemNPs. (A-D) AgNPs and HemNPs were mixed for two days. (E-H)

AgNPs and HemNPs were mixed for six days.
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Fig. S4 Infrared spectra of AgNPs, HemNPs and their composites. MX1-3:

AgNPs and HemNPs were mixed for zero/two/six days.
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Fig. S5 STEM images of C. pyrenoidesa: (A) CK; (B) AgNPs; (C) HemNPs;

(D)MX1; (E)MX2.
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Fig. S6 KEGG functional classification of differentially expressed genes (DEGs).

(A) CK vs AgNPs. (B) CK vs HemNPs. (C) CK vs MX1. (D) CK vs MX2.
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Fig. S7 OPLS-DA of DMs (left: positive mode; right: negative mode).
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Fig. S8 Validation plots of OPLS-DA obtained from 200 tests. A-B: AgNPs vs CK,
C-D: HemNPs vs CK, E-F: MX1 vs CK, E-F: MX2 vs CK (left: positive mode; right:

negative mode).
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Table S1 Determination of hydrodynamic diameter of nanoparticles in experimental

medium by dynamic light scattering

Test NPs AgNPs HemNPs MX1 MX2

DH+ SD (nm) 2123+11.6 282.0+10.2 242.6 £ 6.7 387.8+41.8
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Table S2 Summary of transcriptome sequencing data and transcriptome assembly

Sample Clean reads Clean bases Error rate (%) Q20 (%) Q30 (%) GC content (%)
CKl1 50287276  7.45E+09 0.0251 97.91 94.08 60.55
CK2 49847954  7.37E+09 0.0251 97.95 94.15 60.49
CK3 48070802  7.12E+09 0.0252 97.87 93.98 60.48
AgNPsl 56884760  8.36E+09 0.0251 97.95 94.15 60.41
AgNPs2 50400780  7.45E+09 0.0248 98.05 94.36 60.55
AgNPs3 50158834  7.44E+09 0.0252 97.87 94.02 60.42
HemNPs1 49963406  7.41E+09 0.0254 97.81 93.86 60.55
HemNPs2 51120380  7.58E+09 0.0251 97.95 94.14 60.52
HemNPs3 44481330  6.59E+09 0.0253 97.87 93.96 60.54
MX1-1 49391708  7.3E+09 0.0252 97.88 94.02 60.41
MX1-2 42479548  6.29E+09 0.025 97.96 94.18 60.43
MX1-3 45511676  6.64E+09 0.025 97.96 94.15 60.32
MX2-1 54428796  7.96E+09 0.0252 97.91 94.03 60.26
MX2-2 51559692  7.49E+09 0.0251 97.91 94.07 59.53
MX2-3 41791392  6.17E+09 0.0252 97.89 94.04 60.35
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Table S3 The number of DEGs related to amino acid, carbohydrate, lipid and energy

metabolism
CKvsAgNPs CKvsHemNPs CKvsMX1 CKvsMX2
Up Down Tota Up Down Total Up Down Tota Up Down Tota
1 1 1

Amino acid 4 0 4 0 2 2 5 6 11 18 31 49
metabolism

Carbohydrate 1 2 3 0 8 8 5 8 13 18 44 62
metabolism

Energy 3 4 0 0 26 26 3 20 23 24 39 63
metabolism

Lipid 0 0 0 0 5 5 1 6 7 7 25 32
metabolism

Add above 7 6 13 0 38 38 11 34 45 58 111 169
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