Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supplementary information for

Photocatalytic degradation of ciprofloxacin in freshwater aquaculture wastewater by CNBN membrane:

Mechanism, antibacterial activity, and cyclability

Zhenjun Xiao^a, Yixun Zheng^a, Ping Chen^{a*}, Haijin Liu^b, Zheng Fang^a, Junlong Zhang^c, Zifeng Lin^a, Yudan Zhang^a, Jin Luo^a, Weihong Zhang^a, Wenying Lv^a, Guoguang Liu^{a*}

^a School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006,

China

^b School of Environment, Key Lab Yellow River & Huaihe River Water Environment, Henan Normal University,

Xinxiang, Henan, 453007, China

^c Macao Environmental Research Institute, Macao University of Science and Technology, Macao, 999078, China

*Corresponding Author: Ping Chen; Guoguang Liu

E-mail address: gdutchp@163.com; liugg615@163.com

Phone: +86-20-39322547, Fax: +86-20-39322548

Summary: Number of pages: 30 Number of Texts: 4 Number of tables: 5 Number of figures: 13

Text S1. Method of CN's preparation

6 g of melamine was added to an alumina crucible, then the alumina crucible was transferred to a muffle furnace and heated to 550°C at a steady rate of 3 °C min⁻¹ for 4 hours. After cooling to room temperature, the obtained powder was transferred to an agate mortar for grinding and screening (100 mesh) to obtain the final material (CN).

Text S2. Method of HPLC-MS/MS detection.

The intermediates of CIP were Identified by a liquid chromatograph system (Ultimate 3000RSLC, Thermo Scientific; USA) equipped with Q Exactive Orbitrap precise mass spectrometer (Q Exactive, Thermo Scientific; USA). Separation of intermediate products was accomplished using an Agilent SB-C18 column (5 μ m, 4.6× 150 mm). Flow rate of mobile phase was performed at 0.2 mL min⁻¹ with H₂O. containing 0.2 % (v/v) formic acid, as eluent A, and methanol as eluent B. Program elution was employed by a linear gradient in the composition of the mobile phase. Mainly, the proportion of eluent B increased from 10 % to 60 % in 30 min, and then, from 60% to 100% (v/v) in the next 2 min.

Text S3. Method of photoluminescence spectra

The photoluminescence spectra were monitored with fluorescence spectrophotometer (F97 pro, Shanghai Lengguang; China).

Text S4. Method of H₂O₂ detection experiment.

Method of quantizing H_2O_2 was referred to Kormann et al. ^{1,2}. Specifically, 1.5 mL reaction solution was sampled at a certain interval after being filtered by a 0.45 µm filter. Then 0.75 mL potassium phthalate and 0.75 mL potassium iodide reagent were added successively. Potassium iodide reagent was a mixture containing 0.4 M potassium iodide, 0.06 M sodium hydroxide and 10⁻⁴ M ammonium molybdate. Fifteen minutes after the sample was reacted with potassium iodide, the solution was measured by spectrophotometer at 350 nm, and the concentration of H_2O_2 can be calculated by the standard curve (Fig. S11). In order to make a more intuitive comparison of H_2O_2 generation in the reaction process, we established the following formula (Eqns. (S1-S2)) to reveal the generation rate, and verified the comparison and matching degree between the established formula and experimental data.

 $\Delta k_{fi} = \frac{dC_i}{dT_i} \tag{Eqn. S}$

1.

$$\overline{k_f} = \frac{\sum_{i=0}^{n} \bigtriangleup K_{fi} \cdot T_i}{\sum_{i=0}^{n} T_i} (\times 10^{-6} \, M \, min^{-1})$$
(Eqn. S2)

In Eqns. 1-2, $\triangle k_{fi}$ represents the instantaneous generation rate of H₂O₂ (× 10⁻⁶ M min⁻¹), $\overline{dT_i}$ represents the first derivative of the instantaneous concentration of H₂O₂ with respect to time, T_i represents certain time, $\overline{k_f}$ represents the average rate of H₂O₂ production.

Table S1. Main water qualit	y parameters for the freshwater	aquaculture wastewater.
-----------------------------	---------------------------------	-------------------------

Parameters	Test method	Value
	Potassium dichromate method (GB11914-	
COD	89, National environmental protection	216.2 mg L ⁻¹
	standard of the people's Republic of China)	
	Nessler reagent spectrophotometry (HJ	
· ·	535-2009, National environmental	20.2
ammonia nitrogen	protection standard of the people's Republic	20.3 mg L^{-1}
	of China)	
pН	pH meter	5.3

Element	Concentration (ppm)	
Be	0.000007	
В	0.079316	
Na	18.584414#	
Mg	3.729475	
Al	0.002111	
k	21.110477	
Ca	6.901739	
Ti	0.133015	
V	0.001348	
Cr	0.000914	
Mn	0.004137	
Fe	0.175868	
Со	0.000233	
Ni	0.001045	
Cu	0.001566	
Zn	0.007099	
As	0.003694	
Se	0.000989	
Мо	0.002168	
Ag	0.000014	
Cd	0.00001	
Sb	0.000341	
Ba	0.077954	
T1	0.000003	
Pb	0.000274	

Table S2. Qualitative analysis result of freshwater aquaculture wastewater by ICP-MS.

[#] The red numbers represent cationic concentration reaches ppm level

Names	Mobile phase composition	Detection wavelength (nm)	Chromatographic Column	Column Temperature	
	Methanol :0.2% formic		Zorbax Eclipse		
Ciprofloxacin	acid	278	XDB-C18	35°C	
	30:70(v:v)		(4.6×250mm)		
	Methanol :0.2% formic		Zorbax Eclipse		
Ofloxacin	acid	293	XDB-C18	35°C	
	25:75(v:v)		(4.6×250mm)		
	Methanol :0.2% formic		Zorbax Eclipse		
Norfloxacin	acid	278	XDB-C18	35°C	
	25:75(v:v)		(4.6×250mm)		
	Methanol :0.2% formic		Zorbax Eclipse		
Sulfamethazine	acid	262	XDB-C18	35°C	
	30:70(v:v)		(4.6×150mm)		
	Methanol :0.2% formic		Zorbax Eclipse		
Sulfamethoxazole	acid	275	XDB-C18	35°C	
	30:70(v:v)		(4.6×150mm)		
	Methanol :0.2% formic		Zorbax Eclipse		
Sulfisoxazole	acid	275	XDB-C18	35°C	
	40:60(v:v)		(4.6×150mm)		
	Acetonitrile :0.1% formic		Zorbax Eclipse		
Nitrobenzene	acid	262	XDB-C18	30°C	
	55:45(v:v)		(4.6×150mm)		
	Acetonitrile: ultrapure		Zorbax Eclipse		
Furfuryl alcohol	water	219	XDB-C18	35°C	
	50:50(v:v)		(4.6×250mm)		

Ta	ıble	S3 .	HPLO	C parameters	of	contaminants	and	probes.
----	------	-------------	------	--------------	----	--------------	-----	---------

Table S4. Information of transformation products during the degradation of CIP by CNBN membrane

Sequence number	Retention time (min)	[M+H] ⁺	Molecular weight (Da)	Structure
CIP	8.74	332.13995	331	
P1	14.59	318.29990	317	
Р2	14.84	290.26862	289	
Р3	14.73	274.27374	273	
P4	17.64	256.26328	255	
Р5	9.50	362.11423	361	
P6	8.50	344.22733	343	
P7	14.86	334.29587	333	

photocatalytic system under simulated sunlight irradiation.

P8	13.49	334.29495	333	
Р9	8.37	306.12448	305	
P10	16.35	304.29968	303	
P11	13.87	263.05663	262	
P12	16.85	279.22906	278	
P13	12.87	227.16164	226	H ₂ N F OHOH
P14	9.68	245.13567	244	
P15	8.95	205.09094	204	H ₂ N H ₂ N H ₂ N OH
P16	13.05	293.17087	292	

P17	10.06	279.07959	274	
-----	-------	-----------	-----	--

Atom	2EED ²	$\mathrm{FED}^{2}_{\mathrm{HOMO}}+$	Point
(number) ^a	2FED ² HOMO	FED ² LUMO	charge
N(1)	0.43769 ^b	0.23168°	-
C(14)	-	-	0.44870
C(15)	-	0.26899	-
N(4)	0.19448	-	-
C(22)	-	-	0.42240
C(12)	-	-	0.37663

Table S5. Calculation results of frontier electron densities on atoms of CIP

a: See Figuge. S9 in the SI for atomic numbering.

c: Significant values are highlighted with color.

b: The calculation results of electron density on atoms of CIP are referenced from our group's previous research ³.

Figure S1. Reaction equipment

Figure S2. (a) TEM-EDS mapping of CNBN for (b) carbon, (c) nitrogen and (d) boron.

Figure S3. XPS scan spectra of CNBN membrane and CNBN.

Figure S4. Fluorescence spectra of CN, BN and CNBN.

Figure S5. The degradation rate constants of CIP in the presence of scavengers. Four pieces of CNBN membranes, ultrapure water, [CIP]=10 mg L⁻¹, [optical power density]=5.71 mW cm⁻², pH=5.3.

Figure S6. Influence of different initial pH on the degradation of CIP. Sulfuric acid and sodium hydroxide were used to adjust the initial pH while the control group did not adjust pH, four pieces of CNBN membranes, freshwater aquaculture wastewater, [CIP]=10 mg L⁻¹, [optical power density]=5.71 mW cm⁻², pH=5.3.

Figure S7. HPLC-MS/MS total ion current chromatogram of CIP.

S21

S22

Figure S8. MS/MS fragmentation information of the observed transformation products (P1-P17), the blue diamond represents the corresponding parent ion.

Figure S9. Atomic numbering of CIP used for FEDs analysis and discussion of reaction sites ³.

Figure S10. 3D-EEM images and antibiotic residue of CIP (*E. coli* was used as an indicator) of CIP treated solution that photocatalytic degraded. The decreasing drug sensitive ring on agar plate in the figure represents the disappearance of antibiotic residues over time. The time of the reaction and the diameter of the drug sensitive ring on agar plate were marked in white words in each image. Four pieces of CNBN membranes, ultrapure water, [CIP]=10 mg L⁻¹, [optical power density]=5.71 mW cm⁻², pH=5.3.

Figure S11. CNBN membrane for the photocatalytic H_2O_2 production (embedded figure is the UV absorption standard curve of H_2O_2). Four pieces of CNBN membranes, ultrapure water, [CIP]=10 mg L⁻¹, [optical power density]=5.71 mW cm⁻², pH=5.3.

Figure S12. The adsorption equilibrium time of CIP with powder CN, powder BN, powder CNBN and CNBN membrane in dark, powder catalysts concentration= 900 mg L⁻¹, four pieces of CNBN membranes, freshwater aquaculture wastewater, [CIP]=10 mg L⁻¹, pH=5.3.

Figure S13. Photocatalytic degradation rate of CIP at different powder CNBN concentrations in freshwater aquaculture wastewater, four pieces of CNBN membranes, freshwater aquaculture wastewater, [CIP]=10 mg L⁻¹, [optical power density]= 5.71 mW cm⁻², pH=5.3.

References

- C. Kormann, D. W. Bahnemann and M. R. Hoffmann, Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand, *Environmental Science & Technology*, 1988, 22, 798-806.
- D. Li, C. Wen, J. Huang, J. Zhong, P. Chen, H. Liu, Z. Wang, Y. Liu, W. Lv and G. Liu, High-efficiency Ultrathin Porous Phosphorus-Doped Graphitic Carbon Nitride Nanosheet Photocatalyst for Energy Production and Environmental Remediation, *Applied Catalysis B: Environmental*, 2022, DOI: <u>https://doi.org/10.1016/j.apcatb.2022.121099</u>, 121099.
- F. Wang, Y. Feng, P. Chen, Y. Wang, Y. Su, Q. Zhang, Y. Zeng, Z. Xie, H. Liu, Y. Liu, W. Lv and G. Liu, Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C₃N₄ under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination, *Applied Catalysis B: Environmental*, 2018, 227, 114-122.