Supporting Information

Raspberry-like TiO₂ hollow spheres consisted of small nanocrystals towards efficient NO removal

Hongyu Zhang,^a Baogang Xu,^a Xiao Zhang,^{*b} and Ping Yang^{*a}

^aSchool of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China. E-mail: mse_yangp@ujn.edu.cn

^bW/A School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth WA6845,

Australia. E-mail: xiao.zhang7@postgrad.curtin.edu.au

Fig. S1. Raman spectra of THS-1 and P25.

Fig. S2. XPS spectra of samples. (a) Ti 2p spectra. (b) O 1s spectra.

Fig. S3. (a) TEM and (b) SEM images of P25.

Fig. S4. SEM (a) and TEM (b to d) images of samples. (a) Hollow carbon sphere. (b) THS-1. (c) THS-2. (d) THS-

3. The insets in figures show the size distribution of related samples.

Fig. S5. SEM (right) and EDS elemental mapping (left) of THS-1. Elements Ti ns O were homogeneously distributed

in specmen.

Table S1. BET surface areas (S $_{\text{BET}}$) and total pore volume (V $_{\text{p}}$) of as THS-1 and P25.

Sample	$S_{BET}\left(m^{2}/g ight)$	$V_{p}\left(cc/g\right)$
P25	60.6	0.133
THS-1	172.6	0.392

Fig. S6. (a) PL spectra (λ_{ex} = 380 nm) of samples. (b) PL decay plots (λ_{em} = 475 nm) of samples.