Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supplementary Material

Fe₃O₄-4,4'-Biphenyldicarboxaldehyde superparamagneticnanomaterial for high-efficiency removal of 9-Phenanthrol: Experimental combined with DFT investigations

Zhengwen Wei ^{a,b}, Xiang-fei Lü ^{a,b}, Wei Wang ^{a,b}, Giuseppe Mele ^c, Zhen-Yi Jiang ^d ^a Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China,

^b School of Water and Environment, Chang'an University, Xi'an, 710054, P.R. China

^c Department of Engineering for Innovation, University of Salento, Lecce, 73100, Italy

^{*d*} Institute of Modern Physics, Northwest University, Xi'an Shaanxi, 710054, China ^C Corresponding author.

Wei Wang, Ph.D

Department of Chemical engineering

School of Water and Environment

Chang'an University

Tel: +86-29-82339052,

Fax: +86-29-82335485

E-mail address: wwchem@126.com

[□]Corresponding author.

Giuseppe Mele,

Professor of Department of Engineering for Innovation,

University of Salento,

Tel: +39-0832-297-281

Fax: +39-0832-297-733

Email address: giuseppe.mele@unisalento.it

Document prepared:

Total number of pages of Supporting Information: 11 Number of formulas in Supporting Information: 14 Number of Tables in Supporting Information: 4

List of Supplemental Information:

Detailed description of the formula

 Table S1. Structural information of the original magnetic oxides and the derived

 magnetic nanocomposite.

Table S2. Adsorption kinetics parameters for adsorption of 9-PROL on magnetic
Table S3. Isotherm fitting results of 9-PROL adsorption on magnetic samples.
Table S4. The distance between the Fe₃O₄-0.75BIPHENY and 9-PROL molecular under different bonding modes.

Detailed description of the formula:

Evaluation on adsorption performance and removal efficiency

The removal efficiency and adsorption capacity of the magnet samples were determined according to the following formula:

$$R = \frac{(C_0 - C_e)}{C_0} \times 100\%$$
(1)
$$Q = \frac{(C_0 - C_e) \times V}{M}$$
(2)

Where C_0 represented the initial concentration of 9-PROL, the C_e was the concentration of the suspension at the adsorption reached equilibrium. V (mL) was the volume of the 9-PROL solution to be treated, M (g) represented the mass of the adsorbents.

The kinetic models

The Boyd, Weber-Morris-diffusion, Intra-particle diffusion, Elovich, pseudo-firstorder and pseudo-second-order model were applied to fit the experiment data respectively, and the equations were presented as follows:

Boyd model:

$$B_t = -2.30258 \lg (1 - F) - 0.49770$$
(3)

$$F = \frac{Q_t}{Q_e} \tag{4}$$

The intercept (b) of the straight line could obtained by the linear relationship of B_t vs. time. Where Q_e and Q_t (mg/g) represent the adsorption capacity at equilibrium time and time *t* (min).

Weber-Morris-diffusion model:

$$ln\left(1 - \frac{Q_t}{Q_e}\right) = -k_w t \tag{5}$$

Whereas k_w (min⁻¹) represent the rate constants of the Weber-Morris adsorption diffusion models.

Intra-particle diffusion model:

$$Q_t = k_p t^{1/2} + c (6)$$

Whereas $k_p \pmod{\text{g}^{-1} \min^{0.5}}$ represent the rate constants of the Weber-Morris adsorption diffusion models. Besides, $c \pmod{g}$ reperesents the thickness of the boundary layer.

Elovich model:

$$Q_e = aln \frac{b}{a} + alnt \tag{7}$$

Where Q_e (mg/g) represent the adsorption capacity at equilibrium time (min), and *a* (mg/g), *b* (min mg g⁻¹) are the adsorption rate constant of the Elovich model, respectively.

Pseudo-first-order:

$$Q_t = Q_e (1 - e^{-k_1 t})$$
(8)

Pseudo-second-order:

$$Q_{t} = \frac{Q_{e}^{2}k_{2}t}{1 + k_{2}Q_{e}t}$$
(9)

Where Q_e and Q_t (mg/g) represent the adsorption capacity at equilibrium time and time t (min), and k_1 (min⁻¹), k_2 (g mg⁻¹ min⁻¹) are the adsorption rate constant of the two kinetic models, respectively

The isotherm models:

The Sips, Temkin, Toth, langmuir and Freundlich model were applied to fit the experiment data respectively, and the equations were presented as follows:

Sips model:

$$Q_e = q_{max1} \left(\frac{K_s C_e^{N_s}}{1 + K_s C_e^{N_s}} \right)$$
(10)

Where K_s (L mmol⁻¹) is associated with the energy of adsorption and N_s indicates the system heterogeneity, q_{max1} reresent the maximum adsorption capacity (mg/g) caluated by Sips model. Where Q_e (mg/g) was the amount of 9-PROL adsorption at equilibrium

Temkin model:

$$Q_e = \frac{RT}{b_T} lnK_T + \frac{RT}{b_T} lnC_e$$
(11)

Where K_T is the equilibrium bond constant related to the maximum energy of bond. *R* is the universal gas constant and *T* is the temperature in terms of Kelvin. The b_T constant represents the bond energy.

Toth model:

$$Q_{e} = \frac{q_{max2}b_{T}C_{e}}{\left(1 + \left(b_{T}C_{e}\right)^{R_{T}}\right)^{1/R_{T}}}$$
(12)

Where b_T was the Toth constant and R_T was the exponent of heterogeneous adsorption,

 q_{max2} reresent the maximum adsorption capacity (mg/g) caluated by Toth model.

Langmuir model:

$$Q_e = \frac{q_m k C_e}{1 + k C_e} \tag{13}$$

Where Q_e (mg/g) and C_e (mg/L) were the amount of 9-PROL adsorption and residual 9-PROL concentration at equilibrium; q_m (mg/g) represented the maximum adsorption capacity of 9-PROL, and k is the Langmuir adsorption equilibrium constant (L mg⁻¹).

Freundlich model:

$$Q_e = K_F C_e^n \tag{14}$$

Where K_F is the Freundlich constant (mg ⁽¹⁻ⁿ⁾ Lⁿ g⁻¹) and *n* (dimensionless) is the Freundlich intensity parameter.

$S_{BET} (m^2/g)$	V_{pores} (cm ³ /g)	Pore size (nm)
35.55	0.178	20.03
4.73	0.0215	18.22
3.47	0.0174	19.98
	S _{BET} (m ² /g) 35.55 4.73 3.47	$\begin{array}{c c} S_{BET} \left(m^2/g \right) & V_{pores} \left(cm^3/g \right) \\ \hline 35.55 & 0.178 \\ 4.73 & 0.0215 \\ 3.47 & 0.0174 \end{array}$

Table S1. Structural information of the original magnetic oxides and the derived magnetic

nanocomposite.

Models	Parameters	Fe ₂ O ₄	Fe ₃ O ₄ -	Fe ₃ O ₄ -
		10304	AMINO	0.75BIPHENY
	k (min ⁻¹)	0.00514	0.00597	0.00615
Boyd	b	-0.62009	-0.80516	-0.78911
	R^2	0.92481	0.87196	0.83599
Weber-Morris	$k_w(\min^{-1})$	0.00514	0.00597	0.00615
adsorption diffusion	R^2	0.92481	0.87196	0.83599
Intra-particle diffusion	$k_{pl} \ (\mathrm{mg \ g^{-1} \ min^{1/2}})$	1.69537	1.65071	2.39518
	R^2	0.98657	0.99102	0.99415
	$k_{p2} (\mathrm{mg}\;\mathrm{g}^{-1}\;\mathrm{min}^{1/2})$	0.98083	0.90868	1.15802
	R^2	0.98633	0.99672	0.99509
	$k_{p3} (\mathrm{mg}\;\mathrm{g}^{-1}\;\mathrm{min}^{1/2})$	0.50105	0.36029	0.55674
	R^2	0.7895	0.6844	0.63482
	a	8.0238	7.4962	10.4461
Elovich	b	0.41705	0.34768	0.56118
	R^2	0.99815	0.99813	0.99833
Pseudo-first order	$Q_e(mg g^{-1})$	29.7397	27.2781	38.3679
	$k_1(\min^{-1})$	0.00482	0.00439	0.00514
	R^2	0.9905	0.99239	0.98666
Pseudo-second order	$Q_e(mg g^{-1})$	37.5381	35.1829	48.0475
	k_2 (g mg ⁻¹ min ⁻¹)	0.000128	0.000119	0.000109
	R^2	0.99576	0.99544	0.99607

Table S2. Adsorption kinetics parameters for adsorption of 9-PROL on magnetic samples.

Models	Parameters	Fe ₃ O ₄	Fe ₃ O ₄ -AMINO	Fe ₃ O ₄ - 0.75BIPHENY
Sips	q_{maxl} (mg g ⁻¹)	49.1033	43.1546	89.2646
	K_s (L mmol ⁻¹)	0.66527	0.53262	4.023
	N_s	1.17793	1.16132	1.15139
	R^2	0.99648	0.99873	0.99903
Temkin	b_T	202.5135	234.6849	124.0314
	$K_T(\text{L mg}^{-1})$	4.8367	4.1268	28.2025
	R^2	0.99963	0.99749	0.98369
Toth	$q_{max2} (mg g^{-1})$	48.1364	41.2109	80.8035
	B_t (L mg ⁻¹)	0.53054	0.44465	2.6675
	N_T	1.32843	1.37678	1.47748
	R^2	0.99529	0.99851	0.99863
Langmuir	$q_m (\mathrm{mg \ g^{-1}})$	56.5999	48.8424	109.7346
	<i>k (</i> L mg ⁻¹)	0.5242	0.4476	2.2472
	R^2	0.99498	0.99683	0.99772
Freundlich	$K_F(mg^{(1-n)} L^n g^{-1})$	18.9036	15.2187	94.5572
	п	0.53043	0.51384	0.66163
	R^2	0.96282	0.95988	0.98153

Table S3. Isotherm fitting results of 9-PROL adsorption on magnetic samples.

Table S4. The distance between the $Fe_3O_4\mbox{-}0.75BIPHENY$ and 9-PROL molecular under different

	Bond lengths between specific atoms (Number 1 Atom <i>A</i> -Number 2 Atom <i>B</i>)						
A	Atoms	9 C -43 C	10 C- 46 C	11 C-45C	12 C- 44 C	13 C- 40 C	14 C- 39 C
	Bond lengths (Å)	3.56258	3.79979	3.73294	3.47785	3.29166	3.33104
B	Atoms	9 C- 43 C	10 C- 46 C	11 C-45C	12 C- 44 C	13 C- 40 C	14 C- 39 C
	Bond lengths (Å)	3.50008	3.40317	3.3937	3.41339	3.46194	3.54937
С	Atoms	3 <i>C</i> -43 <i>C</i>	4 C- 39 C	5 C -40 C	6 C- 44 C	7 C -45 C	8 C- 46 C
	Bond lengths (Å)	3.87865	3.48128	3.43846	3.78523	4.15081	4.24026
D	Atoms	3 <i>C</i> -43 <i>C</i>	4 C- 39 C	5 C -40 C	6 C- 44 C	7 C -45 C	8 C- 46 C
	Bond lengths (Å)	3.29317	3.8702	4.22789	4.12006	3.56431	3.09543

bonding modes.