Probabilistic risk assessment of zinc oxide nanoparticles

from consumer products to health of adult populations

Yunsong Mu,*a Xiang Li,^a Peihan Chen,^b Chengfang Pang,^c Fengchang Wu,^c John P. Giesy,^{d,e,f} Huazhen Chang ^a and Fangang Zeng ^{*a}

^{a.} School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China

^{b.} College of Political Science and Law, Capital Normal University, Beijing 100048, China

^{c.} State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

^{d.} Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

e. Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA

^{f.} Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX,
 US 76798-7266

* Corresponding author: muyunsong@ruc.edu.cn; zengfg@ruc.edu.cn

Supporting Information

Table S1 In vivo toxicity data of n-ZnO

No.	n-ZnO	Laboratory animal	Dose	Exposure	Depuration	Effect	Ref
			(mg/(kg•bw))	method	time		
1	n-ZnO (mean size 80 nm)	Swiss albino male mice Mus musculus (8-12 weeks old, weighing 25-30 g) were obtained from departmental animal house	25,50, 100	Oral	0, 24, and 45h	100 mg/kg induce toxicity in bone marrow and liver cells.	[1]
2	n-ZnO (20 and 120 nm)	CD-ICR mice 20–22 g (8 weeks old) female and male	1,000, 2,000, 3,000, 4,000, 5,000	Oral	14 days	The 120 nm ZnO-treated mice had dose–effect pathological damages in the stomach, liver, heart and spleen, whereas 20 nm ZnO caused negative dose–effect damage to the liver, spleen, and pancreas.	[2]
3	n-ZnO (mean size 32 nm)	Male Swiss albino mice 20 ± 2 g (~6 weeks old) were obtained from the Indian Institute of Toxicology Research (Lucknow, India)	50, 300	Oral	14 days	Sub-acute oral exposure to n-ZnO in mice led to an accumulation of nanoparticles in the liver causing oxidative stress, mediated DNA damage, and apoptosis.	[3]
4	n-ZnO	Sprague–Dawley(SD)rats(11/sex/group)were obtained fromOrientBioLtd (Seongnam, Korea)	67.1, 134.2, 268.4, 536.8	Oral	13 weeks	These results indicate that the bio-persistence of n-ZnO after ingestion is key to their toxicity; the no observed adverse effect level (NOAEL) of n-ZnO was found to be 268.4 mg/kg day for both sexes.	[4]
5	n-ZnO (mean size 44.17 ± 6.35 nm)	Nine-week-old nulliparous female and over 12-week-old male Sprague Dawley rats were purchased from Orient Bio (Seoul, Korea).	5, 10, 20	Intravenou s Injection	14 days	Based on the data, the lowest observed adverse effect level of injection exposure in dams was suggested to be 5 mg/kg, which was based on the liver damage indicated by ALP increase and the NOAEL was 10 mg/kg in fetal developmental toxicity.	[5]

6	n-ZnO (20 nm)	Sprague Dawley rats, 8 to 9 weeks old were procured from breeding facilities of International Institute of Biotechnology and Toxicology (IIBAT)	5, 50, 300, 1,000, 2,000	Oral	14 days	We concluded that nano-size zinc oxide exhibited toxicity at lower doses; thus, future nanotoxicology research needs to be focused on importance of dose metrics rather than following the conventional methods while conducting in vivo experiments.	[6]
7	n-ZnO (20 nm)	Sprague Dawley rats aged 6 weeks old and weighing 150-210 g were obtained from an inhouse animal facility	250, 500, 1,000	Oral	90 days	This study demonstrated that there was no observed adverse effect of n-ZnO up to 1000 mg/kg body weight when they were applied dermally.	[7]
8	n-ZnO (27.5 ± 4.1 nm)	Ten pregnant female Sprague– Dawley rats (SD rats) were purchased from the Experimental Animal Center of Nanchang University (Nanchang, China)	68, 203, 610	Oral	28 days	We infer that n-ZnO affected bone growth in young rats directly or indirectly by altering IGF-1 levels. Overall, the results indicate that n-ZnO promoted osteoclast activity and increased bone loss through the OPG/RANK/RANKL/IGF-1 pathway.	[8]
9	n-ZnO (50 nm)	Three-week-old healthy Kunming mice, 12 ± 2 g, were supplied by the Experimental Animal Center of Zhengzhou University, 12 male and 12 female mice in each group	40, 80, 160, 320	Oral	90 days	The main cause for oxidative stress in vivo induced by n-ZnO could be hydroxyl free radical. The lowest observed adverse effect level (LOAEL) was 40 mg/(kg·bw), and the livers, kidneys, lungs, pancreas, and gastrointestinal tracts were the target organs.	[9]
10	n-ZnO	Seven-week-old Sprague Dawley male rats (200–225 g) were purchased from Orient Bio (Gyeonggi-do, Korea).	3, 30	Oral	7 days	n-ZnO were distributed mainly in the liver, kidneys, lung, and spleen, but not the thymus, brain, and testes. In rats injected with 30 mg/kg n- ZnO, mitotic Fig.s in hepatocytes were significantly increased and multifocal acute injuries with dark brown pigments were noted in the lungs, whereas no significant damage was observed in rats treated	[10]

						orally with the same dosage.	
11	n-ZnO (20–30 nm)	Twelve female rats (Wistar), aged 6–8 weeks were purchased from animal house of veterinary department of Urmia University	333.33	Oral gavage	1 day	Glomeruli segmentation, hydropic degeneration in epithelial cells, necrosis of the epithelial cells in tubules, and swelling in the epithelial cells of proximal tubules were found in all kidney tissues, which demonstrated that n-ZnO had severe toxicological effects on the kidneys. Serous inflammation, severe hyperemia in the alveoli, and oedema were observed as pathological findings in the lungs, which suggested that the lung was the third target tissue of the n- ZnO.	; [11] ,
12	n-ZnO (20 ± 10 nm)	Adult male Wistar rats (140–160 g) were purchased from Beijing Vitalriver Experimental Animal Technology Co. Ltd (Beijing, China)	2.5	Oral	3 days	n-ZnO was administered at a dose 2.5 mg/kg body weight, twice daily for 3 days. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP), creatine kinase (CK), and lactate dehydrogenase (LDH) in both nanoparticle-exposed groups were significantly decreased compared to the unexposed controls. Histopathological examination showed that both types of nanoparticles caused severe damage in the liver and lung tissues.	; [12]
13	n-ZnO (< 100 nm)	Fifty Wistar albino rats (170–200 g) were used. The rats were obtained from the Experimental Animal Care Center, College of Pharmacy, King Saud University.	600	Oral	5 days	n-ZnO -induced nephrotoxicity was confirmed by the elevation in serum inflammatory markers including: interleukin-6(IL-6) and C- reactive protein (CRP). Moreover, immunoglobulin (IGg), vascular endothelium growth factor (VEGF), and nitric oxide (NO) were significantly increased in rat serum. Severe congestion was also observed in renal interstitium. These effects were dose dependent.	[13]

Rank	Identification of	Characteristics	Experimental	Record of	Feasibility of	Total score	Ref
	experimental	of experimental	design description	experimental	experimental design and		
	materials	system		results	documentation		
1	4	5	6	3	2	19	[6]
2	2	5	6	3	2	17	[4]
3	2	4	5	3	2	16	[9]
4	2	3	6	3	2	16	[2]
5	3	4	4	3	1	15	[7]
6	4	3	4	1	1	14	[8]
7	2	4	5	1	1	13	[3]
8	2	3	4	2	1	13	[5]
9	2	3	5	1	2	13	[14]
10	2	4	4	1	1	12	[11]
11	3	3	3	2	1	12	[10]
12	2	3	4	1	2	12	[12]
13	1	3	3	2	1	11	[13]

 Table S2 Toxicity data screening based on Klimisch evaluation system in vivo experimental system

Rank	Adequacy	Reliability	Relevance	e Quantity Toxicological significance		Average score	Ref
1	4	5	5	5	4	4.6	[6]
2	4	4	4	5	5	4.4	[4]
3	4	4	4	4	4	4	[9]
4	4	3	4	3	4	3.6	[7]
5	4	3	4	3	3	3.4	[2]
6	3	2	4	3	4	3.2	[8]
7	3	3	3	2	4	3	[10]
8	3	2	4	2	2	2.6	[5]
9	2	3	2	2	2	2.2	[3]
10	2	2	2	2	2	2	[11]
11	2	3	1	1	2	1.8	[14]
12	3	2	2	1	1	1.8	[12]
13	2	2	1	1	1	1.4	[13]

Table S3 The evaluation results of toxicity data based on the selected 13 papers. An expert panel scored each of the identified studies on a scale from 1 to 5, with 5 denoting the highest quality.

Particle size (nm)	Difference in sex	Variable	Values	Ref
		BMD	202.04	
	E	AIC	316.97	
	Females	Test 4 P-value	0.03979	
20		D.O.F.	2	[6]
20		BMD	43.52	[0]
	Malaa	AIC	314.01	
	Males	Test 4 P-value	0.02567	
		D.O.F.	2	
		BMD	/	
	Malaa	AIC	327.93	
	Males	Test 4 P-value	0.1554	
40		D.O.F.	2	[4]
40		BMD	241.36	[.]
	Eamolas	AIC	369.0575496	
	Females	Test 4 P-value	0.001621043	
		D.O.F.	2	
		BMD	179.83	
50	1	AIC	400.59	[9]
50	1	Test 4 P-value	< 0.0001	[7]
		D.O.F.	2	
		BMD	/	
	Fomalas	AIC	353.2631513	
20	Females	Test 4 P-value	0.009850812	[7]
29		D.O.F.	1	[,]
	Molac	BMD	/	
	IVIAICS	AIC	353.2631513	

Table S4 Dose response assessments of selected studies with sufficient quality byBMDS software

		Test 4 P-value	0.009850812		
		D.O.F.	1		
		BMD	442.24		
20	1	AIC	280.11		
20	/	Test 4 P-value	0.04022		
		D.O.F.	2	[2]	
		BMD	4237.28	[2]	
120	1	AIC	315.93		
120	/	Test 4 P-value	0.07292		
		D.O.F.	3		
27.5	/	/	/	[8]	
		BMD	179.83		
50	1	AIC	400.60	[10]	
50	/	Test 4 P-value	< 0.0001	[10]	
		D.O.F.	2		

Physicochemical properties	Values
Average size ^a	20 nm
Size using SEM	63 nm
Size in distilled water ^b	224.7 nm
Polydispersity index	0.305
Surface area ^c	50 m ² /g
Zeta potential ^d	30.9 mV

Table S5 Physicochemical properties of n-ZnO in hazard assessment

SEM: Scanning Electron Microscopy; ^a data from the manufacturer; ^b Dynamic Light Scattering (DLS). ^c BET (Brunauer, Emmett, Teller) analysis; ^d Zeta-sizer

Methods for determining and characterizing physicochemical properties of n-ZnO ZnO nanoparticles (Stock No. 5810HT) were purchased from Nanostructured and Amorphous Materials, Inc. USA. The ZnO (Product No. ZO385) was purchased from Sigma Aldrich, USA. The size of nano-size ZnO was determined with scanning electron microscopy (SEM), at Anna University, SEM produces images by rastering a primary electron beam across the sample surface while detecting secondary or backscattered electrons, which are emitted from the surface. Therefore, the images obtained in an SEM provide a 3D quality and greater resolution. In this study, Hitachi S-520 SEM was used at an accelerating voltage of 10,000 V after depositing the samples onto aluminum stubs with double-sided carbon adhesive tape. Photon correlation spectroscopy or DLS is an analytical technique capable of measuring the size of very small particles, at low sample concentrations. Measurement of particle size of nano ZnO in solution was determined with DLS on a Malvern Zetasizer nanoseries (Nano ZS) with Malvern application software version 6.20. This instrument can measure particle sizes ranging from 0.6 nm to 6 mm using noninvasive back scatter (NIBS) technology and DLS. The Malvern Zetasizer can also provide zeta potential measurements in aqueous and nonaqueous dispersions using M3-phase analysis light scattering (PALS) technology. Zeta potential is defined as the accumulation of charge around the surface of a particle in solution and gives an indication of the stability of the colloidal system.

2. Assumptions and forecasts of Crystal ball runs

Run preferences: Number of trials run: 100,000, Confidence level: 95.00%

Run statistics: Female: Through oral exposure, Total running time (sec): 0.92, Trials/second (average): 108,603, Random numbers per sec:

1,194,631; Through dermal exposure, Total running time (sec): 1.06, Trials/second (average): 94,230, Random numbers per sec: 942,302;

Male: Through oral exposure, Total running time (sec): 1.05, Trials/second (average): 95,362, Random numbers per sec: 858,257; Through dermal exposure, Total running time (sec): 1.48, Trials/second (average): 67,414, Random numbers per sec: 539,316;

Crystal Ball: Assumptions, 14; Forecasts, 3 (female); Assumptions, 12; Forecasts, 3 (male)

Table S6 The assumption of variables for the human health risk assessment (HHRA) of n-ZnO for males and females

Object	Variable	Minimum	GM	Maximum	GSD	Distribution	Diagram
Females	CED _{animal}	/	202	/	19.00	Normal	
	AF_{I}	/	5.40	/	1.20	Logistic-Normal	
	AF_2	/	1.00	/	2.00	Logistic-Normal	
	AF _{intra}	/	0.60	/	1.60	Logistic-Normal	
	$AF_{subacute-chronic}$	/	4.10	/	4.40	Logistic-Normal	

	Absorption factor	0.0001	0.0003	0.0005	/	Triangular	
	U_I	0.005	0.006	0.007	/	Triangular	
	U_2 (oral)	0.10	0.20	0.30	/	Triangular	
	U_2 (dermal)	0.0045	0.005	0.0055	/	Triangular	
	U_3	0.40	0.50	0.60	/	Triangular	
	U_4	0.40	0.50	0.60		Triangular	
	V_{I}	/	0.903	/	0.2027	Normal	
	V_2	/	0.225	/	0.0225	Normal	
	V ₃	/	0.00262	/	0.000027	Normal	
	V_4	/	0.000000054	/	0.0000000236	Normal	
	CED_{animal}	/	43.5	/	2.00	Normal	
N I	AF_{I}	/	5.7	/	1.20	Logistic-Normal	
Iviales	AF_2	/	1.00	/	2.00	Logistic-Normal	
	AF _{intra}	/	0.60	/	1.60	Logistic-Normal	

$AF_{subacute-chronic}$	/	4.10	/	4.40	Logistic-Normal	
Absorption factor	0.0001	0.0003	0.0005	/	Triangular	
U_{I}	0.004	0.0.005	0.0.006	/	Triangular	
U_3	0.40	0.50	0.60	/	Triangular	
U_4	0.40	0.50	0.60	/	Triangular	
V ₁	/	0.1272	/	0.0287	Normal	
V ₃	/	0.00229	/	0.0000236	Normal	
V_4	/	0.0000000472	/	0.0000000207	Normal	

 CED_{animal} is represented as critical effect dose for toxicity testing, mg/(kg·d); AF_1 : represent the corrects for body weight differences between test animal and human; AF_2 : estimates the substance-specific physiologically based toxicokinetic and toxicodynamic (PBTK/TD) differences between test animal and human; AF_{intra} :represent the variability within the human population; $AF_{subacute-chronic}$: represent the sub-acute-chronic assessment factor; $U_{I, 2, ..., n}$ is the uncertainty of n-ZnO nanomaterial intake in relation to product 1, 2, ..., n; $V_{I, 2, ..., n}$ is the variability of the assessed nanomaterial n-ZnO in relation to linked to product 1, 2, ..., n

	Forecas	t: ICED			Forecas	st: IEXP		Forecast: <i>IMoE</i>			
Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast
	values		values		values		values		values		values
Trials	100,000	0%	0.002152	Trials	100,000	0%	0.01528	Trials	100,000	0%	0.04319
Base Case	0.01000	10%	9.04	Base Case	0.5000	10%	0.03295	Base Case	0.3000	10%	208.3
Mean	1,366	20%	24.59	Mean	0.5000	20%	0.03718	Mean	31,148	20%	540.8
Median	143.6.	30%	48.06	Median	0.5000	30%	0.04041	Median	3,182.6	30%	1,056
Mode		40%	84.52	Mode		40%	0.043289	Mode		40%	1,860
Standard	10,116	50%	143.7	Standard	0.1000	50%	0.04599	Standard	2.312×10 ⁵	50%	3,182
Deviation				Deviation				Deviation			
Variance	1.023×10 ⁸	60%	245.0	Variance	0.00	60%	0.04874	Variance	5.343×10 ¹⁰	60%	5,431
Skewness	67.15	70%	440.4	Skewness	0.1983	70%	0.05167	Skewness	55.77	70%	9,798
Kurtosis	8,869	80%	857.2	Kurtosis	2.683	80%	0.05519	Kurtosis	5,840	80%	19,229
Coeff. of	7.400	90%	2,201	Coeff. of	0.2218	90%	0.05999	Coeff. of	7.420	90%	49,440
Variation				Variation				Variation			
Minimum	0.00	100%	1.705×10 ⁶	Minimum	0.02000	100%	0.08955	Minimum	0.0400	100%	3.409×10 ⁷
Maximum	1.705×10 ⁶	/	/	Maximum	0.08955	/	/	Maximum	3.409×10 ⁷	/	/

Table S7 The forecast of *ICED*, *IEXP*, and *IMoE* for females through oral exposure

Mean Std.	31.99	/	/	Mean Std.	0.00	/	/	Mean Std.	730.9	/	/
Error				Error				Error			

ICED: represent as individual human critical effect dose of females, mg/(kg·d); *IEXP*: represent individual margin of exposure of females; *IMoE*:

The individual margin of exposure represents the distance between a person's individual exposure (*IEXP*) and critical effect dose (*ICED*).

	Forecas	t: ICED			Forecas	st: IEXP		Forecast: IMoE			
Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast
	values		values		values		values		values		values
Trials	100,000	0%	0.00000169	Trials	100,000	0%	0.000826	Trials	100,000	0%	0.0003147
Base Case	0.00000416	10%	0.00265745	Base Case	0.006543	10%	0.004908	Base Case	0.0006359	10%	0.4117
Mean	0.4388	20%	0.00689135	Mean	0.006538	20%	0.005449	Mean	70.17	20%	1.066
Median	0.0420	30%	0.01352931	Median	0.006515	30%	0.005843	Median	6.581	30%	2.107
Mode		40%	0.02422977	Mode		40%	0.006189	Mode		40%	3.767
Standard	5.889	50%	0.04204513	Standard	0.001284	50%	0.006515	Standard	953.857	50%	6.580
Deviation				Deviation				Deviation			
Variance	34.68	60%	0.07225491	Variance	0.000002	60%	0.006841	Variance	909843.423	60%	11.31
Skewness	131.35	70%	0.12998107	Skewness	0.100526	70%	0.007192	Skewness	132.749	70%	20.40
Kurtosis	22587.72	80%	0.25980233	Kurtosis	3.020986	80%	0.007616	Kurtosis	23722.951	80%	40.78
Coeff. of	13.42	90%	0.66043842	Coeff. of	0.196465	90%	0.008202	Coeff. of	13.594	90%	105.0 5
Variation				Variation				Variation			
Minimum	0.00	100%	1197.08557	Minimum	0.000826	100%	0.012312	Minimum	0.000	100%	202,645
Maximum	1197.09	/	/	Maximum	0.012312	/	/	Maximum	202645.998	/	/

Table S8 The forecast of *ICED*, *IEXP*, and *IMoE* for females through dermal exposure

Mean Std.	0.0186	/	/	Mean Std.	0.011486	/	/	Mean Std.	202645.998	/	/
Error				Error				Error			

ICED: represent as individual human critical effect dose of females, mg/(kg·d); *IEXP*: represent individual margin of exposure of females; *IMoE*: The individual

margin of exposure represents the distance between a person's individual exposure (IEXP) and critical effect dose (ICED).

	Forecas	st: ICED			Forecas	st: IEXP		Forecast: <i>IMoE</i>			
Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast
	values		values		values		values		values		values
Trials	100,000	0%	0.003400	Trials	100,000	0%	0.0008977	Trials	100,000	0%	3.098
Base Case	0.002800	10%	1.948	Base Case	0.001145	10%	0.001018	Base Case	2.471	10%	1,714
Mean	286.9	20%	4.947	Mean	0.001145	20%	0.001060	Mean	252,704	20%	4,331
Median	29.70	30%	9.719	Median	0.001145	30%	0.001093	Median	25,959	30%	8,492
Mode		40%	17.32	Mode		40%	0.001120	Mode		40%	15,161
Standard	2,838	50%	29.69	Standard	0.00009437	50%	0.001145	Standard	2.407×106	50%	25,959
Deviation				Deviation				Deviation			
Variance	8.057×106	60%	50.64	Variance	0.006501	60%	0.001170	Variance	5.791×1012	60%	44,338
Skewness	104.1	70%	89.61	Skewness	2.422	70%	0.001197	Skewness	88.61	70%	78,395
Kurtosis	16,789	80%	177.5	Kurtosis	0.08241	80%	0.001230	Kurtosis	12,254	80%	155,824
Coeff. of	9.890	90%	448.7	Coeff. of	0.0008977	90%	0.001273	Coeff. of	9.523	90%	394,352
Variation				Variation				Variation			
Minimum	0.0033	100%	5.487×10 ⁵	Minimum	0.001407	100%	0.001407	Minimum	3.098	100%	4.182×10 ⁸
Maximum	5.487×10 ⁵	/	/	Maximum	0.0005096	/	/	Maximum	4.182×108	/	/

Table S9 The forecast of *ICED*, *IEXP*, and *IMoE* for males through oral exposure

Mean Std.	8.975	/	/	Mean	Std.	2.98×10 ⁻⁷	/	/	Mean	Std.	7,611	/	/
Error				Error					Error				

ICED: represent as individual human critical effect dose of males, mg/(kg·d); *IEXP*: represent individual margin of exposure of males; *IMoE*: The

individual margin of exposure represents the distance between a person's individual exposure (*IEXP*) and critical effect dose (*ICED*)

	Forecas	t: ICED			Forecas	st: IEXP		Forecast: <i>IMoE</i>			
Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast	Statistics	Forecast	Percentiles	Forecast
	values		values		values		values		values		values
Trials	100,000	0%	2.710×10-7	Trials	100,000	0%	4.132×10-6	Trials	100,000	0%	0.0006028
Base Case	8.490×10 ⁻⁷	10%	0.0005451	Base Case	0.001272	10%	4.434×10 ⁻⁴	Base Case	6.674×10 ⁻⁴	10%	0.8661
Mean	0.0836	20%	0.001418	Mean	0.000637	20%	0.0005074	Mean	141.90	20%	2.254
Median	0.008517	30%	0.002779	Median	0.000633	30%	0.0005539	Median	13.79	30%	4.442
Mode		40%	0.004956	Mode		40%	0.00059461	Mode		40%	7.971
Standard	0.7245	50%	0.008517	Standard	0.0001532	50%	0.0006331	Standard	1,32	50%	13.79
Deviation				Deviation				Deviation			
Variance	0.5248	60%	0.01466	Variance	2.346×10 ⁻⁸	60%	0.0006715	Variance	1,748,866	60%	23.83
Skewness	82.46	70%	0.02612	Skewness	0.1459	70%	0.0007135	Skewness	94.57	70%	42.71
Kurtosis	11,587	80%	0.05231	Kurtosis	3.081	80%	0.0007634	Kurtosis	14,676	80%	85.62
Coeff. of	8.663	90%	0.1350	Coeff. of	0.2406	90%	0.0008349	Coeff. of	9.32	90%	222.7
Variation				Variation				Variation			
Minimum	2.710×10-7	100%	129.0	Minimum	4.132×10-6	100%	0.001368	Minimum	0.0006028	100%	250,634
Maximum	129.04	/	/	Maximum	0.001368	/	/	Maximum	250,634	/	/

Table S10 The forecast of *ICED*, *IEXP*, and *IMoE* for males through dermal exposure

Mean Std.	0.002291	/	/	Mean	Std.	4.843×10 ⁻⁷	/	/	Mean	Std.	4.182	/	/
Error				Error					Error				

ICED: represent as individual human critical effect dose of males, mg/(kg·d); *IEXP*: represent individual margin of exposure of males; *IMoE*: The

individual margin of exposure represents the distance between a person's individual exposure (*IEXP*) and critical effect dose (*ICED*)

Mode	Sigmodal-logistic model									
Equation		y = a/(1 + ex)								
Name	Female (oral)	Female (dermal)	Male (oral)	Male (dermal)						
а	99.76867 ± 0.59185	99.7558 ± 0.53842	99.93271 ± 0.59942	99.75857 ± 0.51656						
x_c	3.50391 ± 0.0104	0.81225 ± 0.00965	4.41442 ± 0.01051	1.13557 ± 0.00923						
k	1.83144 ± 0.02592	1.79123 ± 0.01774	1.82058 ± 0.02638	1.79784 ± 0.01711						
Reduced Chi-Sqr	0.44622	0.38371	0.45174	0.35223						
R^2 (COD)	0.99968	0.99959	0.99969	0.99962						
Adj R ²	0.99964	0.99955	0.99964	0.99959						

Table S11 The fitting model of the cumulative probability of *IMoE*

Fig. S1 The frequentist exponential Degree 4 model of BMR for males (A) and females (B)

Fig. S2 Probability distribution of individual human critical effect dose (*ICED*) for males (A) and females (B) through oral exposure

Fig. S3 Probability distribution of individual human critical effect dose (*ICED*) for males (A) and females (B) through dermal exposure

Fig. S4 Probability distribution of individual exposure level values for (*IEXP*) for males (A) and females (B) through oral exposure

Fig. S5 Probability distribution of individual exposure level values for (*IEXP*) for males (A) and females (B) through dermal exposure

Fig. S6 Probability distribution of individual exposure margin (*IMoE*) for males (A) and females (B) through oral exposure

Fig. S7 Probability distribution of individual exposure margin (*IMoE*) for males (A) and females (B) through dermal exposure

Fig. S8 Initial section of the probability distribution of individual exposure margin (*IMoE*) for males (A) and females (B), where the minimum *IMoE* is lower than 1 in females through oral exposure (0-5% interval)

Fig. S9 Initial section of the probability distribution of individual exposure margin (*IMoE*) for males (A) and females (B), where the minimum *IMoE* is lower than 1 in both sexes through dermal exposure (0-11.45% interval for males and 0-18.87% interval for females)

Fig. S10 Probabilistic risk assessment of n-ZnO by the APROBA-plus tool, oral exposure of adult males (A), oral exposure of adult females (B), dermal exposure of adult males (C), and dermal exposure of adult females (D)

References

- M. Ghosh, S. Sinha, M. Jothiramajayam, A. Jana, A. Nag and A. Mukherjee, Cytogenotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells in vitro and Swiss albino male mice in vivo, *Food Chem Toxicol*, 2016, 97, 286-296.
- B. Wang, W. Feng, M. Wang, T. Wang, Y. Gu, M. Zhu, H. Ouyang, J. Shi, F. Zhang, Y. Zhao, Z. Chai, H. Wang and J. Wang, Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice, *J Nanopart Res*, 2007, 10, 263-276.
- V. Sharma, P. Singh, A. K. Pandey and A. Dhawan, Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles, *Mutat Res*, 2012, 745, 84-91.
- S. H. Seok, W. S. Cho, J. S. Park, Y. Na, A. Jang, H. Kim, Y. Cho, T. Kim, J. R. You, S. Ko, B. C. Kang, J. K. Lee, J. Jeong and J. H. Che, Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions, *J Appl Toxicol*, 2013, **33**, 1089-1096.
- J. Lee, W. J. Yu, J. Song, C. Sung, E. J. Jeong, J. S. Han, P. Kim, E. Jo, I. Eom, H. M. Kim, J. T. Kwon, K. Choi, J. Choi, H. Kim, H. Lee, J. Park, S. M. Jin and K. Park, Developmental toxicity of intravenously injected zinc oxide nanoparticles in rats, *Arch Pharm Res*, 2016, **39**, 1682-1692.
- S. Pasupuleti, S. Alapati, S. Ganapathy, G. Anumolu, N. R. Pully and B. M. Prakhya, Toxicity of zinc oxide nanoparticles through oral route, *Toxicol Ind Health*, 2012, 28, 675-686.
- H. J. Ryu, M. Y. Seo, S. K. Jung, E. H. Maeng, S. Y. Lee, D. H. Jang, T. J. Lee, K. Y. Jo, Y. R. Kim, K. B. Cho, M. K. Kim, B. J. Lee and S. W. Son, Zinc oxide nanoparticles: a 90-day repeated-dose dermal toxicity study in rats, *Int J Nanomedicine*, 2014, 9, 137-144.
- X. Y. Xu, Y. Z. Tang, Y. Y. Lang, Y. L. Liu, W. S. Cheng, H. Y. Xu and Y. Liu, Oral exposure to ZnO nanoparticles disrupt the structure of bone in young rats via the OPG/RANK/RANKL/IGF-1 pathway, *Int J Nanomed*, 2020, 15, 9657-9668.

- T. Kong, S. H. Zhang, C. Zhang, J. L. Zhang, F. Yang, G. Y. Wang, Z. J. Yang, D. Y. Bai, M. Y. Zhang, J. Wang and B. H. Zhang, Long-term effects of unmodified 50 nm ZnO in mice, *Biol Trace Elem Res*, 2019, 189, 478-489.
- J. Choi, H. Kim, P. Kim, E. Jo, H. M. Kim, M. Y. Lee, S. M. Jin and K. Park, Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration, *J Toxicol Environ Health A*, 2015, **78**, 226-243.
- M. Esmaeillou, M. Moharamnejad, R. Hsankhani, A. A. Tehrani and H. Maadi, Toxicity of ZnO nanoparticles in healthy adult mice, *Environ Toxicol Pharm*, 2013, 35, 67-71.
- L. J. Wang, L. Wang, W. J. Ding and F. Zhang, Acute Toxicity of Ferric Oxide and Zinc Oxide Nanoparticles in Rats, *J Nanosci Nanotechno*, 2010, 10, 8617-8624.
- L. M. Faddah, N. A. A. Baky, N. M. Al-Rasheed, N. M. Al-Rasheed, A. J. Fatani and M. Atteya, Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats, *BMC Complem Altern M*, 2012, **12**, 60.
- X. C. Yan, R. Rong, S. S. Zhu, M. C. Guo, S. Gao, S. S. Wang and X. L. Xu, Effects of ZnO nanoparticles on dimethoate-induced toxicity in mice, *J Agr Food Chem*, 2015, 63, 8292-8298.