Supplementary Information

Nanomaterials-modulated cellular sodium extrusion and vacuolar

sequestration for salt tolerance

Feiran Chen,^a Liqi Zhu,^a Junfeng Tang,^a Chuanxi Wang,^a Le Yue,^a Peter Schröder,^b Zhenyu

Wang*,a

^a Institute of Environmental Processes and Pollution Control, and School of Environmental and

Civil Engineering, Jiangnan University, Wuxi 214122, China

^b Research Unit Microbe Plant Interactions, Helmholtz Zentrum München, Neuherberg 85764,

Germany

*Corresponding author. *E-mail address*: wang0628@jiangnan.edu.cn (Dr. Zhenyu Wang)

Number of pages: 14 Number of figures: 9 Number of supplementary texts: 4 Number of tables: 3

Number of video: 1

List of Supplementary Information

Figure S1. The functional groups of nCeO₂ characterized by FTIR.

Figure S2. Cell viability tested by TTC after exposure to nanomaterials.

Figure S3. Ion release of nCeO₂ in 1/2 MS medium added with 100 mM NaCl. Viability of control cells (CK), cells exposed to NaCl alone (S), or NaCl + 0.1 mg L⁻¹ CeO₂ bulk particles (BPs). Viability of control cells (CK), cells exposed to NaCl alone (S), or NaCl + 0.93 or 1.51 μ g L⁻¹ Ce³⁺ ions.

Figure S4. Dry weight of BY-2 cells after addition of 0.1 mg L⁻¹ nCeO₂ or 0.5 mg L⁻¹ N-CDs; Cell viability tested by PI/FDA staining of BY-2 cells after 24 h exposure in the presence or absence of N-CDs; Conductivity of BY-2 cells altered by 0.5 mg L⁻¹ N-CDs or 0.1 mg L⁻¹ nCeO₂.

Figure S5. Relative gene expression of salt tolerance-related genes after exposure to $0.1 \text{ mg L}^{-1} \text{ nCeO}_2$ or $0.5 \text{ mg L}^{-1} \text{ N-CDs}$. S: BY-2 cells treated with 100 mM NaCl, S-NM: salt-stressed cells exposed to either nCeO₂ or N-CDs.

Figure S6. Cellular contents of Ca and Na after exposure to 0.1 mg L^{-1} nCeO₂ and contents of Na and K after exposure to 0.5 mg L^{-1} N-CDs.

Figure S7. The surface electronic states of nCeO₂ characterized by XPS.

Figure S8. Intracellular ROS levels in salt-stressed BY-2 cells after addition of 0.1 mg L^{-1} nCeO₂.

Figure S9. The separation between groups in principal component analysis (PCA) of metabolites altered by $nCeO_2$ or N-CDs exposure; Number of common and distinctively changed metabolites between $nCeO_2$ and N-CDs treatment; VIP scores of metabolites in BY-2 cells changed by either $nCeO_2$ or N-CDs exposure.

Text S1. Measurement of cell viability after different NMs exposure.

Text S2. ICP-MS measurement of nCeO₂ and cellular Ca, Na, and K content.

Text S3. TEM imaging and ROS measurement.

Text S4. LC-MS/MS analysis of metabolites.

Table S1. Hydrodynamic diameter and zeta potential of nCeO₂ and N-CDs.

Table S2. Primers used for qPCR.

Table S3. Evaluation of method accuracy for ICP-MS.

Video S1. NMT measurement of net Na⁺ fluxes in BY-2 cells under salt stress (grey line, S) and after additional exposure to $nCeO_2$ for 6 h (red line, $nCeO_2$).

Figure S1. The functional groups of nCeO₂ characterized by FTIR.

Figure S2. Cell viability tested by TTC after exposure to $nCeO_2$ (a), N-CDs (b), $nSiO_2$ (c), CDs (d), nFe_2O_3 (e), and $nMnFe_2O_4$ (f) during 2-72 h. CK: control BY-2 cells without any treatments, S: BY-2 cells treated with 100 mM NaCl, S-NMs: salt-stressed cells exposed to nanomaterials.

Figure S3. Ion release of $nCeO_2$ in 1/2 MS medium added with 100 mM NaCl (a). Viability of control cells (CK), cells exposed to NaCl alone (S), or NaCl + 0.1 mg L⁻¹

CeO₂ bulk particles (BPs) (b). Viability of control cells (CK), cells exposed to NaCl alone (S), or NaCl + 0.93 or 1.51 μ g L⁻¹ Ce³⁺ ions (c).

Figure S4. Dry weight of BY-2 cells after addition of 0.1 mg L^{-1} nCeO₂ or 0.5 mg L^{-1} N-CDs (a); Cell viability tested by PI/FDA staining of BY-2 cells after 24 h exposure in the presence or absence of N-CDs (b); Conductivity of BY-2 cells altered by 0.5 mg L^{-1} N-CDs (c) or 0.1 mg L^{-1} nCeO₂ (d).

Figure S5. Relative gene expression of salt tolerance-related genes after exposure to $0.1 \text{ mg } \text{L}^{-1} \text{ nCeO}_2$ (a) or $0.5 \text{ mg } \text{L}^{-1} \text{ N-CDs}$ (b). S: BY-2 cells treated with 100 mM NaCl, S-NM: salt-stressed cells exposed to either nCeO₂ or N-CDs.

Figure S6. Cellular contents of Ca (a) and Na (b) after exposure to 0.1 mg L^{-1} nCeO₂

and contents of Na (c) and K (d) after exposure to 0.5 mg L^{-1} N-CDs.

Figure S7. The surface electronic states of nCeO₂ characterized by XPS.

Figure S8. Intracellular ROS levels in salt-stressed BY-2 cells after addition of 0.1 mg

L⁻¹ nCeO₂.

metabolites altered by $nCeO_2$ (a) or N-CDs (b) exposure; Number of common and distinctively changed metabolites between $nCeO_2$ and N-CDs treatment (c); VIP scores of metabolites in BY-2 cells changed by either $nCeO_2$ (d) or N-CDs (e) exposure. The color intensity of the scale bar indicates up-and down-regulation of metabolites.

Text S1. Measurement of cell viability after different NMs exposure

BY-2 cells at exponential stage were transferred into 1/2 MS medium spiked with 100 mM NaCl for 24 h, followed by addition of different NMs (0.05, 0.1, and 0.5 mg L⁻¹ nCeO₂, N-CDs, nTiO₂, nMnFe₂O₄, and nFe₂O₃), and samples were collected at time intervals of 2, 4, 6, 12, 24, 48, and 72 h, respectively. One mL BY-2 cell suspension was washed with PBS buffer (0.1 M, pH 7.2) for three times and the resulting supernatants were removed. The cells were resuspended with 1 mL TTC (0.3% v/v, in 0.05 M PBS, pH 7.2) and incubated for 8 h in dark at 25 °C, the samples were centrifuged at 6000 rpm to remove PBS followed by addition of ethanol (95%), and placing in a water bath at 60 °C for 15 min to extract the formazan. The supernatant after 5 min centrifugation at 6000 rpm was quantified with a microplate reader (Thermo Scientific, USA) with absorbance at 485 nm. Based on the results of TTC measurement (Fig. S2) and results from our previous study,¹ nCeO₂ (0.1 mg L⁻¹) and N-CDs (0.5 mg L⁻¹) were selected as optimal NMs for the following experiments. For FDA/PI double staining, 100 µL cell suspension was mixed with FDA (20 mg L⁻¹) and PI (20 mg L⁻¹) for 5 min and evaluated with a fluorescent microscope (Nikon Ni-U, Japan), the cell viability was determined as the percentage of viable (FDA positive) and dead (PI positive) cells.

Text S2. ICP-MS measurement of nCeO₂ and cellular Ca, Na, and K content.

The particle concentration and size of nCeO₂ in BY-2 cells were quantified by single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). After washing with PBS buffer, 100 mg of cells were collected and added with 4 mL MES buffer (20 mM, pH 5.0) for further vortexing and sonication. One mL enzyme solution (Macerozyme R-10, 20 mg mL⁻¹) was then added and incubated on a shaker (37°C, 200 rpm) for 24 h. After enzymatic digestion, the samples were settled for 1 h and the supernatant was filtered (0.22 µm) and diluted two times before measurement on SP-ICP-MS (Thermo Scientific[™] iCAP[™] TQ ICP-MS, Germany). The quantification of cellular Ca, Na, and K content was conducted by an inductively coupled plasma mass spectrometer (ICP-MS, Thermo Scientific[™] iCAP[™] TQ ICP-MS, Germany). Dried cells (25 mg) were digested with 3 mL ultrapure water and 3 mL guaranteed reagent HNO₃ in a microwave accelerated reaction system (CEM corp, Matthews, NC), the digestions were filtered with 0.22 µm membrane before loading on the ICP-MS. A multi-element standard solution was inserted every five samples for conducting the quality control, and method accuracy was evaluated by using a standard reference material (tea leave, GBW10016a, Table S3).

Text S3. TEM imaging and measurement of ROS.

The subcellular morphology of BY-2 cells exposed to N-CDs was visualized by TEM. The samples were prepared as follows: cells were collected by centrifugation at 1,500 rpm under room temperature followed by two times of wash with 0.1 M PBS (pH 7.2), fixation and embedding were conducted as previously described.² The embedded cells were sectioned by an ultra-microtome (Leica, EM UC7) and then scanned by the TEM. The ROS levels in salt-stressed BY-2 cells after addition of addition of 0.1 mg L⁻¹ nCeO₂ were measured based on a previous literature.³ Briefly, cells were collected after 2, 4, 6, and 24 h exposure, supernatants were removed after centrifugation at 12 000 rpm for 5 min. After three times washing with PBS buffer (0.1M, pH 7.2) and removal of supernatants, samples were incubated with DCFH-DA (Sigma-aldrich, USA, 10 μ M) in the dark for 30 min. Cells were then washed three times with PBS buffer and centrifuged at 12 000 rpm for 5 min. The fluorescence intensity was measured by a microplate reader (Thermo Scientific, USA) at the excitation and emission wavelengths of 488 nm and 525 nm, respectively.

Text S4. LC-MS/MS analysis of metabolites.

An Acquity HSS T3 column (2.1 × 100 mm, 1.8 μ m) was applied for rapid separation of analytes using the following mobile phases for elution: H₂O, 0.1% formic as mobile phase A, and acetonitrile, 0.1% formic acid as mobile phase B with following gradient: 0 min 5% B; 1.5 min 5% B; 15.5 min 100% B; 16 min 5% B; 18 min 5% B. Additionally, an Agilent Hilic Poroshell 120 column (2.1 × 100 mm, 2.7 μ m) was also applied using the following mobile phases for elution: H₂O, 0.1% formic, 5 mM ammonium acetate as mobile phase A, and 95% acetonitrile, 0.05% formic acid, 5 mM ammonium acetate as mobile phase B with following gradient: 0 min 98% B; 7 min 75% B; 10 min 10% B; 13 min 10% B; 13.5 min 98% B; 15 min 98% B. The flow rate was 0.35 mL min⁻¹. The injection volume was 5 μ L. Two QC samples were injected at the beginning of each sample sequence and re-injected every eight samples to evaluate the stability of the analytical system. The ESI interface was adjusted to the following conditions: sheath gas pressure, 35 arbitrary units; aux. gas flow, 15 arbitrary units; sweep gas flow, 0 arbitrary units; capillary temperature, 320 °C; aux. gas heater temperature, 350 °C. A spray voltage of 3.5 kV and -3.0 kV for ESI (pos) and ESI (neg) was used, respectively. The raw data were processed using Compound Discoverer 3.1 software (Thermo Fisher Scientific, USA) coupled with the mzCloud and ChemSpider libraries. A supervised partial least-squares discriminant analysis (PLS-DA) clustering method was applied for LC-MS/MS data via online resources (http://www.MetaboAnalyst.ca/). Before PLS-DA analysis, data were normalized by median and log-transformed. The variable importance in projection (VIP) score was used to rank the metabolites based on their importance to the entire model. A VIP score > 1 or t-test *p* value < 0.05 is regarded as significant for the separation and is defined as a discriminating metabolite.⁴

NMs	Culture medium	Hydrodynamic	Zeta potential (mV)
		diameter (nm)	
	water	355.53 ± 38.40	5.70 ± 0.54
nCeO ₂	1/2 MS	91.16±0.39	-20.38 ± 1.95
	1/2 MS +100 mM NaCl	250.87±36.10	-14.43 ± 1.48
	water	136.07 ± 4.06	-6.48 ± 0.06
N-CDs	1/2 MS	353.33±2.81	-10.77 ± 0.21
	1/2 MS +100 mM NaCl	205.27±22.02	-5.07 ± 0.22

Table S1. Hydrodynamic diameter and zeta potential of $nCeO_2$ and N-CDs.

Table S2. Primers used for qPCR.

Gene	FW-Primer	RW-Primer	
Name			
EF1α	TCACATCAACATTGTGGTCATTGGC	TTGATCTGGTCAAGAGCCTCAAG	
SOS1	ACACTCATCATCAACGGCTCAACC	TCCAAGATCACCAAATGCTTCCAGAG	
SOS2	ACGATTGAAGCAGCAGCAGAGTC	TGACCAGCCTTATTTGCCGTTACC	
SOS3	TGTTCGGTCGTTAAGCCTATTCCAC	TCAGCTCTTCACGTTCTATGTATCCAG	
IPUT1	CATCAGCGGCAGCAATCATGTTG	GACCACCTACCACCATCAAACCTAAC	
NHXI	TGGTGTGGATATGGATTTGGACTTCAG	AGGCAGCAATGGCACAATAGGC	

Elements	Linearity	Linearity	Detection	Tea	Tea
	range	equation	limit	(GBW10016a)	(GBW10016a)ICP-
	$(mg/L)/R^2$		(ng/L)	Standard value	MS measured value
				$(\mu g/g)$	$(\mu g/g, n = 3)$
Ca	0-10/0.999	y = 5.795x +	20217	4700±200	4262±125
		438.342			
Na	0-10/1.000	y = 469.533x +	3066	22.6±6.7	23.0±2.2
		6329.130			
Κ	0-10/0.999	y = 85.732x +	12862	14500 ± 500	17401 ± 380
		3544.261			
Ce	0-0.1/1.000	y = 81303.777x-	19	1.3 ± 0.2	$1.6{\pm}0.1$
		40.017			
Fe	0-10/1.000	y = 81.982x +	422	149±7	213±8
		70.042			
Mg	0-10/1.000	y = 199.001x +	29	1800 ± 100	1498±4
		258.414			
Р	0-10/1.000	y = 795.152x +	419	2400 ± 100	2546±23
		1876.021			
S	0-10/1.000	y = 1271.860x +	706	2600 ± 200	2432±32
		17220.382			
Zn	0-0.1/0.997	y = 775.7x +	114	27±3	28.8±0.4
		1036.427			
Mn	0-0.1/0.999	y = 1480.176x +	6	1250±40	1624±47
		71.852			

Table S3. Evaluation of method accuracy for ICP-MS.

Video S1. NMT measurement of net Na⁺ fluxes in BY-2 cells under salt stress (grey

line, S) and after additional exposure to nCeO₂ for 6 h (red line, nCeO₂).

References:

- L. Zhu, F. Chen, M. Tao, Y. Liu, X. Zhao, Z. Wang, Mechanisms of plant salt tolerance promoted by nanomaterials. *Research of Environmental Sciences*, 2022, Doi:10.13198/j.issn.1001-6929.2022.03.14.
- J. Zhao, X. Cao, X. Liu, Z. Wang, C. Zhang, C. J. White, B. Xing, Interactions of CuO nanoparticles with the algae *Chlorella pyrenoidosa*: adhesion, uptake, and toxicity. *Nanotoxicology* 2016, 10, 1297-1305.
- 3. Y. Dai, Z. Wang, J. Zhao, L. Xu, L. Xu, X. Yu, Y, Wei, B. Xing. Interaction of

CuO nanoparticles with plant cells: internalization, oxidative stress, electron transport chain disruption, and toxicogenomic responses, *Environ. Sci.: Nano*, 2018, **5**, 2269-2281.

4. W. Ma, L. Yue, F. Chen, H. Ji, N. Fan, M. Liu, Z. Xiao, Z. Wang, Z. Silica nanomaterials and earthworms synergistically regulate maize root metabolite profiles via promoting soil Si bioavailability, *Environ. Sci.: Nano*, 2021, **8**, 3865-3878.