Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Water reduction on the facets of Fe(OH)2: an experimental and DFT study

Han Song,‡a Xinwen Ou,‡a Mengye Wang,b Yan Zhang,c Zhang Lin*a,d,e

- ^a. School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
- b. State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials, Sun Yat-Sen University, Guangzhou, 510275 China
- ^c. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- d. School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
- ^e. Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China.

This PDF file includes:

Figures S1 to S5 and Table S1 to S2

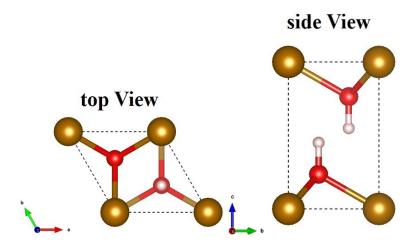


Fig. S1. DFT-optimized crystal structure of $Fe(OH)_2$; Fe = orange spheres, O= red spheres and H= white spheres.

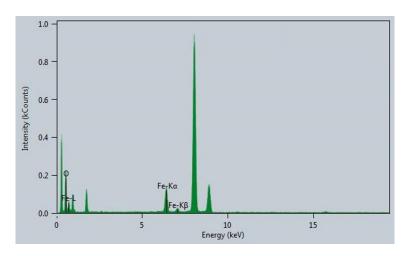


Fig. S2. The elemental spectroscopy of as-prepared $Fe(OH)_2$.

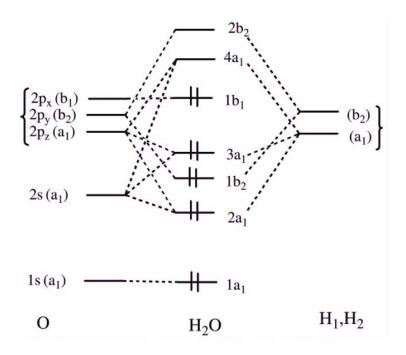
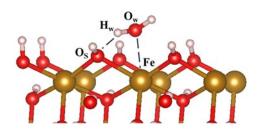



Fig. S3. The schematic diagram for molecular orbitals of free water molecule.

Fig. S4. The DFT-optimized atomic configurations of two atom pairs for COHP and ICOHP calculation, when H₂O was adsorbed on (100) facet of Fe(OH)₂.

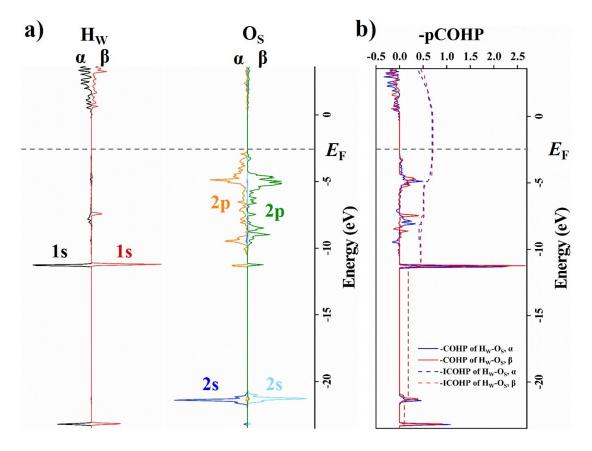


Fig. S5. Projected electronic densities of states (pDOS) of 1s orbital of H_W , 2s and 2p orbitals of O_S on $Fe(OH)_2$ (100) facet after H_2O adsorption. b) The crystal orbital hamilton population (COHP) and integrated COHP (ICOHP) density between H_W and O_S . α = spin up and β = spin down.

Table S1. The comparison of H_2O morphology before and after adsorbed on different facets of $Fe(OH)_2$.

Facet	(100)	(101)	(102)	Free water
				molecule
Angel/o	105.7	104.9	105.4	104.5
$O-H_1/\text{\AA}$	1.015	0.994	0.976	0.973
$O-H_2/Å$	0.973	0.975	0.974	0.973

Table S2. The Bader charge of free H_2O molecule and after adsorbed on different surfaces of $Fe(OH)_2$.

G 1 -	Bader charge (electrons)				
Sample	H_1	H_2	О	Total	
(100)	0.33	0.26	7.43	8.02	
(101)	0.33	0.32	7.34	7.99	
(102)	0.34	0.36	7.28	7.98	
Free H ₂ O molecule	0.33	0.31	7.36	8.00	