Supporting information

Application of nano-agricultural technology for biotic stress management:

mechanisms, optimization, and future perspectives

Xuesong Cao^{a,b}, Zhenyu Wang^{a,b,*}

^aInstitute of Environmental Processes and Pollution control, and School of

Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China

^bJiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction

Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan

University, Wuxi 214122, China

*Corresponding author:

Tel.:+86 0510 85911123; Fax:+86 0510 85911123 E-mail address: wang0628@jiangnan.edu.cn (Dr. Zhenyu Wang)

Figure S1. The global pesticides use in agriculture from 1990-2019. Source of data: FAOSTAT (http://www.fao.org/faostat/en/#data). Accessed date: 23 April 2022.

Figure S2. Number of publication related to using nano-agricultural technology in crop disease and pest control from 2010-2022. Source of data: Web of Science. Accessed date: 23 April 2022. Keywords: Nano agriculture application disease/pest/insect.

Table S1 The crop disease and pest occurrence area, prevention and control area, and induced yield loss in China mainland from 2010-2016. Source of data: Ministry of Agriculture and Rural Affairs of the People's Republic of China (http://zdscxx.moa.gov.cn:8080/nyb/pc/index.jsp). Accessed date: 23 April 2022.

	Crop disease and pest	Crop disease and pest	Crop disease and pest
Year	occurrence area (1000	prevention and control area	induced yield loss
	hectares)	(1000 hectares)	(tons)
2010	367369.07	444919.95	16211916.37
2011	355687.06	437928.01	13591830.12
2012	384621.00	481687.00	17172212.06
2013	359533.44	445990.12	14180100.00
2014	348415.18	449141.13	13821913.28
2015	344643.94	438206.56	14186794.72
2016	321800.43	413983.21	12295833.87
Average	354581.45	444550.85	14494371.49

NMs	Application method and dose	Host and pathogen/pest	Performance and mechanism	Reference
Ag ⁰ (size: not reported)	Foliar application; 10 and 100 mg/L	Tobacco; Phytophthora parasitica	The disease control efficiency of 100 mg/L Ag ⁰ NMs was comparable to mefenoxam (33.2 μg of active ingredient/mL). Mechanistically, Ag ⁰ NMs exhibited high antimicrobial activity.	Ali et al. (2015) ²⁹
Ag ⁰ (size: 18-39 nm)	Foliar application; 25, 50, 75, and 100 mg/L	Rice; Xanthomonas oryzae pv. oryzae	100 mg/L Ag ⁰ NMs inhibited the spread of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> in rice by 72.5%. Mechanistically, Ag ⁰ NMs exhibited high antimicrobial activity.	Ahmed et al. (2020) ³¹
Ag ⁰ (size: 35 nm)	Foliar application; 30, 60, 90, 120, and 150 ppm	Castor; <i>Spodoptera</i> <i>litura</i> and <i>Helicoverpa</i> <i>armigera</i>	The antifeedant acitivity of Ag ⁰ NMs was significantly higher than equivalent mass Ag ions, while lower than equivalent mass Azadurachtin (commercial pesticide).	Manimegalai et al. (2022) ³²
Ag ⁰ (size: not reported)	Soil amendment; 20, 40, 200, 500, and 1500 mg/kg	Tomato; Meloidogyne incognita	Ag ⁰ NMs at 200 mg/kg caused 52.0% mortality of pathogenic nematodes after 3 days exposure, and the application of Ag ⁰ NMs showed no effect on the growth of plant and the free living nematodes.	Entsar (2016) ³³
Ag ⁰ (size: 7.7-50.2 nm)	Foliar application; 100 mg/L	Bean; Bean yellow mosaic virus	Ag ⁰ NMs decreased the disease severity of bean by 25.0-97.3%. Mechanistically, Ag ⁰ NMs exhibited high antimicrobial activity.	Elbeshehy et al. (2015)
Chitosan Schiff-based Ag ⁰ (size: not reported)	Foliar application; 19.2, 11.5, 5.8, and 2.9 mg/L	Tobacco; Tobacco mosaic virus	 Chitosan Schiff-base Ag⁰ NMs suppressed 72.2 % tobacco mosaic virus spread in tobacco. Mechanistically, chitosan Schiff-base Ag⁰ NMs enhanced the antioxidative enzyme activity (superoxide dismutase (SOD), peroxidase (POD), hydrogen peroxidase (CAT), and phenylalanine ammonia lyase (PAL)) in tobacco. 	Wang et al. (2016) ³⁰
Cu ⁰	Foliar application; 1.0, 1.5, 2.0, and 2.5 mg/L	Tea tree; Poria hypolateritia	Cu ⁰ NMs reduced the disease incidence in tea trees and enhanced their yield. Mechanistically, Cu ⁰ NMs exhibited high antimicrobial activity.	Ponmurugan et al. (2016)

Table S2 Current	investigations	on using NMs	to control cro	o diseases and	nests.
	mesugations			o albeabeb alla	pesco.

(size: 5-50 nm)

Graphene oxide loaded CuO (size: 21.3 nm)	Foliar application; 4 and 8 mg/L	Tomato; <i>Pseudomonas</i> <i>syringae</i> pv. <i>tomato</i>	Graphene oxide loaded CuO NMs decreased the disease severity of tomato by 10-55%. Mechanistically, graphene oxide loaded CuO NMs exhibited high antimicrobial activity.	Li et al. (2017) ¹³³
Cu-chitosan (size: 150 nm)	Seed treatment; 0.01, 0.04, 0.08, 0.12, and 0.16% (w/v)	Maize; Curvularia lunata	Cu-chitosan NMs reduced the disease severity of maize. Mechanistically, Cu- chitosan NMs could "mimic" the natural elicitation of the plant defense and antioxidant system to enhance the host disease resistance.	Choudhary et al. (2017)
CuO (size: 30 nm)	Foliar application; 1000 mg/L	Watermelon; Fusarium oxysporum	CuO NMs reduced the rank sum of disease ratings of Fusarium wilt in watermelon by about 35% and enhanced the yield of watermelon by 39%- 53%. Mechanistically, CuO NMs upregulated the PR gene in watermelon and enhanced the activity of PPO.	Elmer et al. (2018) ³⁹
CuO (size: 40 nm)	Foliar application; 500 mg/L	Chrysanthemum; Fusarium oxysporum	Chrysanthemum treated with CuO NMs had a 30-55% reduction in disease severity as compared with untreated plants. Mechanistically, CuO NMs provided Cu nutrient to chrysanthemum.	Elmer et al. (2021)
CuO (size: 320 nm)	Soil amendment; 31 mg Cu/kg	Lettuce; Fusarium oxysporum	The fresh shoot biomass of pathogen infected lettuce was significantly enhanced by the presence of CuO NMs. Mechanistically, CuO NMs enhanced the disease resistance in lettuce.	Shang et al. (2021) ¹²⁹
CuO (size: 40-80 nm)	Root irrigation; 50, 125, and 250 mg/L	Tobacco; Ralstonia solanacearum	The disease index of <i>Ralstonia solanacearum</i> infected tobacco was decreased from 97.3 to 38.1% after treated with 250 mg/L CuO NMs. Mechanistically, CuO NMs exhibited excellent antibacterial activity.	Chen et al. (2019)
CuO (size: 30 nm); Cu ₃ (PO ₄) ₂ (size: 50-610 nm)	Foliar application; 500 mg/L	Tomato; Fusarium oxysporum	Supplementary with Cu ₃ (PO ₄) ₂ and CuO NMs obviously reduced disease occurrence by 31%, with subsequent enhancing tomato growth. Mechanistically, Cu based NMs upregulated the expression of PR genes and enhanced the activity of antioxidative enzyme.	Ma et al. (2019) ⁴¹
CuS (size: 5-10 nm)	Seed treatment and Foliar application; 50	Wheat; Gibberella fujikuroi	Seed soaking with 50 mg/L CuS NMs (1:4) decreased the disease incidence of bakanae disease in rice by 45.9%. Mechanistically, CuS NMs had high	Shang et al. (2020) ⁴⁰

	mg/L		antifungal ability and could active the disease resistance in wheat.	
Glycine- Cu(OH) ₂ (size: 240 nm)	Foliar application; 200, 400, and 800 Cu mg/L	Chinese cabbage; Xanthomonas campestris pv. campestris	The disease control efficacy of glycine-Cu(OH) ₂ NMs was >74.5%. Mechanistically, glycine-Cu(OH) ₂ NMs exhibited high antimicrobial ability.	Dong et al. (2020)
CuO (size: 30 nm); Cu ₃ (PO ₄) ₂ (size: 50-610 nm)	Foliar application; 50 mg/L	Tomato; Fusarium oxysporum	CuO and Cu ₃ (PO ₄) ₂ NMs application reduced disease progress by approximately 40 and 56%. CuO and Cu ₃ (PO ₄) ₂ NMs could modulate crop nutrition to increase resistance to disease.	Shen et al. (2020) ⁴²
CuO (size: 30 nm); Cu ₃ (PO ₄) ₂ (size: 50-610 nm)	Foliar application; 50 and 250 mg/L	Soybean; Fusarium virguliforme	CuO and Cu ₃ (PO ₄) ₂ NMs significantly alleviated much of the pathogen infection induced soybean biomass loss. Cu based NMs upregulated the expression of PR genes and promoted antioxidative enzyme activity.	Ma et al. (2020) ¹⁷
SiO ₂ (size: not reported)	Soil amendment; 10.5 g/kg	Cucumber; Papaya ring spot virus	SiO ₂ NMs amendment significantly reduced the disease severity of cucumber from 5.3 to 0.6. Mechanistically, SiO ₂ NMs amendment enhanced the expression of PR genes and the activity of antioxidative enzyme.	Elsharkawy and Mousa (2015)
SiO ₂ (size: 20 nm)	Foliar application; 100 mg/L	Tobacco; Tobacco mosaic virus	 SiO₂ NMs application significantly decreased the relative expression of TMV-CPRNA and the accumulation of TMV protein in tobacco leaves by 79.2 and 47.3%. Mechanistically, SiO₂ NMs had antimicrobial activity and upregulated the expression of PR genes and the activity of antioxidative enzyme. 	Cai et al. (2019)
SiO ₂ (size: 54 nm)	Foliar application; 25- 1600 mg/L	Arabidopsis; Pseudomonas syringae	Treatment with SiO ₂ NMs (25 mg/L) resulted in a partial reduction of 29% of bacterial growth in host leaves. Mechanistically, SiO ₂ NMs activated the SA dependent SAR pathway in Arabidopsis leaves.	El-Shetehy et al. $(2021)^{28}$
SiO ₂ (size: 56 nm)	Foliar application; 1500 mg/L	Watermelon; Fusarium oxysporum f. sp. niveum	Fast dissolving SiO ₂ NMs enhanced the growth and yield of watermelon infected with <i>Fusarium oxysporum f. sp. niveum</i> . Mechanistically, fast dissolving SiO ₂ NMs could sustainable and efficient provide Si nutrient for	Kang et al. (2021) ⁵²

Si ⁰ (size: 5 nm)	Foliar application; 10, 50, and 150 mg/L	Maize; Mythimna separata	50 mg/L Si ⁰ NMs significantly inhibited the growth of armyworm on maize leaf surface. Mechanistically, Si ⁰ NMs increased the production of chlorogenic acid in maize.	Wang et al. (2021) ⁵⁴
SiO ₂ (size: 50 nm)	Foliar application; 1 and 5 mg/L	Rice; Nilaparvata lugens Stal	 5 mg/L SiO₂ NMs application enhanced the fresh biomass of rice shoot by 61.9% in the presence of planthopper. Mechanistically, SiO₂ NMs promoted lignin formation and upregulated the expression of pest resistance related genes in rice. 	Cheng et al. (2021) ⁵³
CeO ₂ (size: 8 nm)	Soil amendment and foliar application; 50 and 250 mg/kg(L)	Tomato; Fusarium oxysporum f. sp. lycopersici	Disease severity was significantly reduced by soil amendment (53%) and foliar application (57%) with 250 mg/kg (L) of CeO ₂ NMs.	Adisa et al. (2018)
CeO ₂ (size: 54 nm)	Soil amendment; 10, 50, and 100 mg/kg	Tomato; Helicoverpa armigera	50 mg/kg CeO ₂ NMs amendment enhanced tomato shoot biomass by 38.2% in the presence of herbivore. Mechanistically, CeO ₂ NMs enhanced the defense- related compounds in tomatoes.	Xiao et al. (2021) ⁶⁰
S ⁰ (size: 30 nm)	Seed treatment and foliar application; 10, 30, 50, 100, and 200 mg/L	Tomato; <i>Fusarium</i> oxysporum f. sp. lycopersici	100 mg/L S ⁰ NMs significantly decreased disease occurrence by 47.6%. Mechanistically, S ⁰ NMs enhanced the salicylic acid content and activated SAR in tomato.	Cao et al. (2021) ¹⁹
Carbon nanotube (diameter: 30- 50nm; length: 10-20 µm), graphene (thickness: 8-	Foliar application; carbon nanotube: 50 and 100 mg/L, graphene: 250 and 500 mg/L	Tomato; Fusarium oxysporum	Carbon based NMs significantly decreased the disease severity of pathogen infected tomatoes by 40-56% and increased the yield of tomato by 18-25%. Mechanistically, carbon based NMs enhanced the photosynthetic pigments, ascorbic acid and flavonoids, and the activity of the antioxidant enzymes content in tomato.	González-García et al. (2022) ⁶⁶

watermelon.

12 nm;

diameter: 2				
μm)				
Nitrogen			Nitrogen doped carbon dots application suppressed disease severity of tomato	
doped carbon	Foliar application; 10	Tomato; Ralstonia	by 71.2%. Mechanistically, nitrogen doped carbon dots could direct scavenge	Luo et al.
dots	mg/L	solanacearum	excess ROS, enhance antioxidative enzyme activity, and active SAR in	(2021)57
(size: 2 nm)			tomatoes.	
reduced				
graphene oxide			The spread of Podosphaera pannosa on rose leaves was significantly	
(thickness: 0.6-	Foliar application; 50	Rose; Podosphaera	suppressed by 45.9% after foliar application with 200 mg/L reduced graphene	Hao et al.
3.7 nm;	and 200 mg/L	pannosa	oxide. NMs exposure increased plant disease resistance through enhancing the	$(2019)^{46}$
diameter: 500			concentration of phytohormones.	
nm)				
Chitosan	Sand transforments 50, 100	Pearl millet;	250 mg/kg chitosan NMs application decreased the disease incidence from	Siddaich at al
(Size: not	Seed treatment; $50, 100,$	sclerospora	97.5 to 8.3%. Chitosan NMs enhanced host disease resistance against downy	Siddaian et al. (2018)
reported)	250, and 500 mg/kg	graminicola	mildew through increase nitric oxide generation.	(2018)
MaO	Faliar application, 100	Tomato: Vanthomonas	The disease severity of pathogen infected tomato in MgO NMs treatments was	Lino at al
(Size: 20 nm)	Folial application, 100 , 200 and 1000 mg/L	norforms	12-32% less than Kocide 3000+Mancozeb treatments. Mechanistically, MgO	(2021)63
(Size. 20 mil)	200, and 1000 mg/L	perjorans	NMs had excellent antimicrobial ability.	(2021)**
			ZnO NMs significantly alleviated the harmful effects of ToMV infection in	
ZnO	Foliar application; 50	Tomato; Tomato	tomatoes. Mechanistically, ZnO NMs exhibited high antimicrobial ability and	Sofy et al.
(Size:12 nm)	and 100 mg/L	mosaic virus	enhanced the content of enzymatic and non-enzymatic antioxidants in	$(2021)^{64}$
			tomatoes.	
Hydroxyapatite			Hydrovyapatite NMs exposure significantly increased the shoot mass of	
(width: 10 nm;	Foliar application; 9.3	Tomato; Fusarium	nathogen infected tomato by 40% Mechanistically, hydroxyapatite	Ma et al.
length:10-20	and 46.5 mg P/L	oxysporum	significantly elevated PAL activity and total phenolic content in tomatoes	$(2021)^{98}$
nm)			signmeaning elevated i AL activity and total phenone content in tolliatoes.	

Fe ₃ O ₄ (Size: 20 nm)	Foliar application; 100 mg/L	Tobacco; <i>Tobacco</i> mosaic virus	The relative tobacco mosaic virus content at the transcription and protein levels was decreased from 1.00 and 1.41 to 0.33 and 0.34 after the application of Fe ₃ O ₄ NMs. Fe ₃ O ₄ NMs activated plant antioxidants, and upregulated SA synthesis and the expression of SA responsive PP genes, thereby enhancing	Cai et al. (2020) ⁶²
			synthesis and the expression of SA-responsive PR genes, thereby enhancing plant resistance against pathogens.	

References

- E. K. Elbeshehy, A. M. Elazzazy and G. Aggelis, Silver nanoparticles synthesis mediated by new isolates of *Bacillus spp.*, nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. *Front. Microbiol.*, 2015, **6**, 453.
- P. Ponmurugan, K. Manjukarunambika, V. Elango, and B. M. Gnanamangai, Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. *J. Exp. Nanosci.*, 2016, **11**, 1019-1031.
- R. C. Choudhary, R. V. Kumaraswamy, S. Kumari, S. S. Sharma, A. Pal, R. Raliya, P. Biswas and V. Saharan, Cu-chitosan nanoparticle boost defense responses and plant growth in maize (*Zea mays L.*). *Sci. Rep.*, 2017, **7**, 1-11.
- W. H. Elmer, N. Zuverza-Mena, L. R. Triplett, E. L. Roberts, R. A. Silady and J. C. White, Foliar application of copper oxide nanoparticles suppresses fusarium wilt development on chrysanthemum. *Environ. Sci. Technol.*, 2021, **55**, 10805-10810.
- J. Chen, S. Mao, Z. Xu and W. Ding, Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne *Ralstonia* solanacearum. *RSC Adv.*, 2019, **9**, 3788-3799.
- H. Dong, R. Xiong, Y. Liang, G. Tang, J. Yang, J. Tang, J. Niu, Y. Gao, Z. Zhou and Y. Cao, Development of glycine-copper (ii) hydroxide nanoparticles with improved biosafety for sustainable plant disease management. *RSC Adv.*, 2020, **10**, 21222-21227.
- M. M. Elsharkawy and K. M. Mousa, Induction of systemic resistance against *Papaya ring spot virus* (PRSV) and its vector *Myzus persicae* by *Penicillium simplicissimum* GP17-2 and silica (SiO₂) nanopowder. *Int. J. Pest Manage.*, 2015, **61**, 353-358.
- L. Cai, C. Liu, G. Fan, C. Liu, and X. Sun, Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in *Nicotiana benthamiana*. *Environ. Sci.: Nano*, 2019, **6**, 3653-3669.
- I. O. Adisa, V. L. Reddy Pullagurala, S. Rawat, J. A. Hernandez-Viezcas, C. O. Dimkpa, W. H. Elmer, J. C. White, J. R. Peralta-Videa and J. L. Gardea-Torresdey, Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (*Solanum lycopersicum*). J. Agric. Food Chem., 2018, 66, 5959-5970.

C. N. Siddaiah, K. V. H. Prasanth, N. R. Satyanarayana, V. Mudili, V. K. Gupta, N. K. Kalagatur, T. Satyavati, X.F. Dai, J.Y. Chen, A. Mocan, B.P. Singh, and R. K. Srivastava, Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. *Sci. Rep.*, 2018, 8, 1-14.