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Text S1. Catalyst synthesis

In order to ensure the objectivity of the control experiment, we prepared TiO2, 

Au@TiO2, Au@Co3O4-0.5, Au@Co3O4-2 by the same method as Co3O4 and 

Au@Co3O4. 

TiO2: 0.142 mL of Titanium isopropoxide solution (C12H28O4Ti, 0.954 g cm-3) was 

added into 150 mL water (70 oC), and stirred continuously at 15 rpm for 1 min. After 

that, 9 mL of ammonia solution (NH3·H2O, 0.16-0.19 M) was added and stirred 

continuously at 15 rpm for 22 min (70 oC). After cooling down to room temperature (30 
oC), the precipitate was collected by centrifugation (12000 rpm, 5 min), and washed 

with distilled water (100 mL) and methanol (40 mL). Finally, the obtained black powder 

(noted as TiO2) was dried at 70 oC for 12 h. And proved to be amorphous TiO2 by XRD 

(Fig. S11).

Au@TiO2: 1260 μL of chloroauric acid solution (HAuCl4, 0.029 M) was mixed with 

150 mL water (70 oC), and stirred at 15 rpm for 1 min. Then, 0.142 mL of Titanium 

isopropoxide solution (C12H28O4Ti, 0.954 g cm-3) was added into the obtained solution, 

and stirred continuously at 15 rpm for 1 min. After that, 9 mL of ammonia solution 

(NH3·H2O, 0.16-0.19 M) was added and stirred continuously at 15 rpm for 22 min (70 
oC). After cooling down to room temperature (30 oC), the precipitate was collected by 

centrifugation (12000 rpm, 5 min), and washed with distilled water (100 mL) and 

methanol (40 mL). Finally, the obtained black powder (noted as Au@TiO2) was dried at 

70 oC for 12 h. It mainly contains Au and amorphous TiO2 was ensured by XRD (Fig. 

S11).

Au@Co3O4-0.5, 500 μL of chloroauric acid solution (HAuCl4, 0.029 M) was mixed 

with 150 mL water (70 oC), and stirred at 15 rpm for 1 min. Then, 4.8 mL of cobalt 

nitrate solution (Co(NO3)2, 0.1 M) was added into the obtained solution, and stirred 

continuously at 15 rpm for 1 min. After that, 9 mL of ammonia solution (NH3·H2O, 0.16-

0.19 M) was added and stirred continuously at 15 rpm for 22 min (70 oC). After cooling 

down to room temperature (30 oC), the precipitate was collected by centrifugation 

(12000 rpm, 5 min), and washed with distilled water (100 mL) and methanol (40 mL). 

Finally, the obtained black powder (noted as Au@Co3O4-0.5) was dried at 70 oC for 12 

h. It mainly contains Au and Co3O4 was ensured by XRD (Fig. S11).



Au@Co3O4-2, 2000 μL of chloroauric acid solution (HAuCl4, 0.029 M) was mixed 

with 150 mL water (70 oC), and stirred at 15 rpm for 1 min. Then, 4.8 mL of cobalt 

nitrate solution (Co(NO3)2, 0.1 M) was added into the obtained solution, and stirred 

continuously at 15 rpm for 1 min. After that, 9 mL of ammonia solution (NH3·H2O, 0.16-

0.19 M) was added and stirred continuously at 15 rpm for 22 min (70 oC). After cooling 

down to room temperature (30 oC), the precipitate was collected by centrifugation 

(12000 rpm, 5 min), and washed with distilled water (100 mL) and methanol (40 mL). 

Finally, the obtained black powder (noted as Au@Co3O4-2) was dried at 70 oC for 12 h. 

It mainly contains Au and Co3O4 was ensured by XRD (Fig. S11).

Text S2. Determination of formaldehyde and intermediate byproducts by GC-MS

The tail gas was extracted by solid-phase microextraction and detected by a gas 

chromatography-mass spectrometry system (GCMS) (Agilent 7890B-5977B) with O-(2,3,4,5,6-

Pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA) as derivate reagent, with a DB-5ms 

capillary column (30 m × 0.25 mm × 0.25 μm). GC temperature program of column was 60 oC 

for 1 min, rose to 260 oC at 7 oC min-1 holding for 1 min. Mass spectra was performed in full 

scan mode with an m/z range of 30-280, while the temperature of the transfer line was 300 
oC, recorded in electron ionization mode at an ion source temperature of 230 oC.

Text S3. Determination of intermediate byproducts by HPLC

Total 10 mg of the catalyst after the catalytic reaction was immersed in 2 ml of deionized 

water, and filtering it after ultrasonic treatment for 5 min. Then the filtrate was detected by 

High-performance liquid chromatography (HPLC) (Agilent 1260) with an Athena C18-WP 

chromatographic column (10 nm, 4.6 × 150 mm, 5 μm). The amount of sample injected each 

time is 20 μL, 0.02% phosphoric acid solution is used as the mobile phase, the detection 

wavelength is 210 nm, and the flow rate is 1 mL min-1. Use formic acid solution and sodium 

bicarbonate solution for qualitative analysis.

All reagents used above were obtained from Aladdin Reagent Co., Ltd. (Shanghai, China) 

and employed as received without further purification.



Table S1. Overview of the photocatalytic activities in formaldehyde oxidation of various catalysts.

Sample Weight
/g

Concentration
/ppm

GHSV
/mL g-1 h-1

Catalytic conditions Removal 
efficiency

Ref.

Au@ Co3O4 0.01 75 300000 200 mW/cm2 Xenon lamp
 360 – 850 nm,
Dynamic flow, 25 ℃, RH 76%

91.5%: 15 min (dark)
98.7%:15 min (light)

This 
work

g-C3N4 0.1 180 8w fluorescent lamp
Chamber

26%：(dark)
57 %: 7h (light)

1

g-C3N4/CeO2 0.1 180 8w fluorescent lamp 
Chamber

21%: (dark)
70 %: 7h (light)

1

CeO2 0.1 180 8w fluorescent lamp 
Chamber 

22%: (dark)
63 %: 7h (light)

1

g-C3N4/CeO2 0.1 140  8w fluorescent lamp
Chamber

70.0%: 9h (dark)
77.1%: 9 h (light)

2

CeO2/CN-1:1 0.3 65 ± 5  100 mW/cm2Xe lamp
≥420 nm, 
Dynamic flow, RH 60%

52%: 120 min (dark)
100%: 90 min (light)

3

Sn-CaSn(OH)6 0.4 47.8 Uv lamp (365 nm)
Dynamic flow,

79.3%: 12min (light) 4

BiSbO4 0.4 150000 Mercury lamp, 300W
Dynamic flow,

92.0%: 20min (ligth) 5

CuO/TiO2 0.1 180 500W Xe lamp 
Chamber, RH 40%

90.3%: 150min (light) 6

Eu/CeO2 0.1 500   100W halogen lamp
Chamber, 25℃

80.0 %: 120 min (light) 7

CeO2 0.1 500   100W halogen lamp
Chamber, 25℃

18.8 %: 120min ( light) 7



Scheme S1. Schematic of the experimental system. (1) Check value; (2) Pressure gage; (3) 

Evaporation tank with water; (4) RH gage; (5) Xenon lamp and its power supply; (6) Sample 

bin; (7) Sample port for gas detection tube.

Fig. S1. Schematic of the synthetic route of Au@Co3O4 nanocomposite.
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Fig. S2. The spectral range of the xenon lamp: all optical (a), <420 nm (b), 420-800 

nm (c), >800 nm (d).

Fig. S3. SEM image of Au@Co3O4 nanocomposite (a), Co(OH)2 and prepared Co3O4.
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Fig. S4. EDS spectrum map of Au@Co3O4 nanocomposite.

10 20 30 40 50 60 70 80

 

 

In
te

ns
ity

 (a
. u

.)

 Co(OH)2

 

 

2 theta (degree)

 Co(OH)2

JCPDS file no. 3-913

Fig. S5. XRD patterns of Co(OH)2.



Fig. S6. XRD patterns of prepared Co3O4 and Au@Co3O4 nanocomposite.
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Fig. S7. Nitrogen adsorption-desorption isotherms (a) and the corresponding pore size 

distributions (b) of prepared Co3O4 and Au@Co3O4 nanocomposite.
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Fig. S8. Pyr-DRIFT (a) and NH3-DRIFT (b) of prepared Co3O4 and Au@Co3O4 nanocomposite.
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Fig. S9. XPS of Au@Co3O4-OTT: survey (a), Co 2p (b), Au 4f (c) and O1 s (d).

2.04 2.03 2.02 2.01 2.00 1.99 1.98 1.97

 
 

In
te

ns
ity

 (a
.u

.)

g factor

g = 2.001

Fig. S10. ESR of Au@Co3O4 nanocomposition.

https://www.sciencedirect.com/topics/chemistry/x-ray-photoelectron-spectroscopy
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Fig. S11. XRD patterns of TiO2, Au@TiO2, Au@Co3O4-0.5 and Au@Co3O4-2.
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Fig. S12. Control experiment: formaldehyde elimination efficiency (a, b), CO2 concentration 

(c, d) and formaldehyde mineralization (e, f) of TiO2, Au@TiO2, Au@Co3O4-0.5, 

Au@Co3O4-2 in the dark and visible-light irradiation (RH: 45%) in a flow of 

formaldehyde (75 ppm) at GHSV of 300000 mL h-1 g-1 (30 oC, 300 W Xenon lamp).
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Fig. S13. Formaldehyde elimination efficiency both in the dark and visible-light irradiation at 

RH 45% in a flow of formaldehyde (75 ppm) at GHSV of 300000 mL h-1 g-1 (30 oC, 300 W 

Xenon lamp).

Fig. S14. XRD pattern (a) and SEM image (b) of Au@Co3O4 nanocomposite after catalytic 

reaction.
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Fig. S15. Formaldehyde elimination efficiency both in the dark and visible-light irradiation at 

the low concentration of formaldehyde (1 ppm) in the simulate actual indoor conditions 

(RH 45%).
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Fig. S16. PTR-QMS mass spectra with formaldehyde elimination in the dark and visible-light 

irradiation over Au@Co3O4 nanocomposite. (The tail gas collected via gas bag and 

diluted with nitrogen, followed by pumped into PTR-QMS)
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Fig. S17. HPLC chromatogram of the intermediate byproducts of formaldehyde under 

different conditions (a), CH2O2 (b), and NaHCO3 (c).
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Fig. S18. Dynamic changes of in situ DRIFTS of Au@Co3O4 nanocomposite in different 

conditions, dehydration with N2 purging at 120 oC (a), adsorption and activated H2O at 
30 oC (b), adsorption or elimination of formaldehyde after adsorption and activated H2O 
at 30 oC (c) and N2 + H2O purging after elimination of formaldehyde at RH 45%, 30 oC.
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Fig. S19. O2-TPD profiles of Au@Co3O4 nanocomposite (Au@Co3O4 adsorbed oxygen under 

light).
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Fig. S20. PL spectra of prepared Co3O4 and Au@Co3O4 nanocomposition.
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