Supplementary material for:

Few-layer graphitic carbon nitride for enhanced visible-light photocatalytic efficiency: the role of narrow bandgap and nitrogenvacancies

Qiang Huang, Yang Liu, Wenhui Bai, Jiahui Hong, Yuejie Ai* and Zhe Chen*

MOE Key Lab of Resources and Environmental System optimization, College of

Environmental Science and Engineering, North China Electric Power University, Beijing

102206, P. R. China

Corresponding authors. Email: chenz@ncepu.edu.cn

Content

Text S1 HPLC analysis conditions	5
Text S2 Density functional theory (DFT) calculation	6
Text S3 Results and discussion	6
Text S3.1 XRD spectrum analysis	6
Text S3.2 FT-IR spectrum analysis	7
Text S3.3 DFT analysis	7
Text S3.4 Analysis of possible degradation pathway toward 2,4,6-TCP	9

Fig. S3 (A) Photocatalytic activities for the degradation of BPA over different B-C₃N₄ materials ($C_{BPA} = 10 \text{ mg L}^{-1}$, Dosage = 20 mg, Volume = 50 mL, T = 298.15 K, 380 nm $\leq \lambda \leq 780 \text{ nm}$); (B) Reaction rate constants according to the first-order kinetics in 180 min (the samples 1, 2, 3, 4 refer to the B-C₃N₄ prepared at 450, 500, 550, 650 °C, respectively).

Fig. S4 (A) Photocatalytic activities for the degradation of BPA over different B-C₃N₄ materials ($C_{BPA} = 10 \text{ mg L}^{-1}$, Dosage = 20 mg, Volume = 50 mL, T = 298.15 K, 380 nm $\leq \lambda \leq$ 780 nm); (B) Reaction rate constants according to the first-order kinetics

and	corresponding	conversion	rates in	n 180	min	(the	samples	1, 2,	3 refer	to t	he	B-
C_3N	4, B- C ₃ N ₄ -F, B	-C ₃ N ₄ -OH, 1	respecti	vely).								12

Fig. S5 (A-C) SEM images and (D-F) TEM images of the template RUB-15.....13

Fig. S7 (A-C) SEM images and (D-F) TEM images of B-C₃N₄.....14

Fig. S11 Optimized structures of (A) monolayer and multilayer $g-C_3N_4$ without nitrogen vacancy, (B) monolayer $g-C_3N_4$ @NV, and (C) multilayer $g-C_3N_4$ @NV.16

Fig. S12 EPR spectra of DMPO- \cdot O₂⁻ from few-layer g-C₃N₄ nanosheet and B-C₃N₄.

Fig. S13 (A) HPLC-MS chromatograms of the intermediate sample from the photocatalysis degradation of 2,4,6-TCP; The mass spectra of (B) 2,4,6-TCP, (C) 2,6-DCHQ and (D) 2,6-DCHB; (E) Flow diagram of 2,4,6-TCP degradation pathway....17

Table S1 BET surface areas of B-C₃N₄ and few-layer g-C₃N₄ nanosheet17

Table S2Element content and atomic ratio of $B-C_3N_4$ and few-layer $g-C_3N_4$ nanosheet.17

Table	S3	The calculated	formation	energies	of monolaye	r and mult	ilayer g-0	C_3N_4
NV								18
Table	S4	Comparative st	udy of the	photocat	alytic perform	nance of o	ther C ₃ N ₄	4-based

photocatalysts under similar conditions......19

Text S1 HPLC analysis conditions

BPA: The samples were filtered with 0.22 μ m polyethersulfone syringe membrane filter to determine the BPA concentration via HPLC (Agilent 1260 Infinity II, USA) with an Agilent InfinityLab Poroshell 120 EC-C18 column (4.6 \times 150 mm, 4 μ m). The mobile phase was a mixture of 70% methanol and 30% water. The flow rate and injection volumes were 0.5 mL/min and 10 μ L, respectively. The detector wavelength was set at 225 nm. The retention time of BPA was 5.7 min.

Phenol: The samples were filtered with 0.22 μ m polyethersulfone syringe membrane filter to determine the phenol concentration via HPLC (Agilent 1260 Infinity II, USA) with an Agilent InfinityLab Poroshell 120 EC-C18 column (4.6 \times 150 mm, 4 μ m). The mobile phase was a mixture of 60% methanol and 40% water. The flow rate and injection volumes were 0.5 mL/min and 20 μ L, respectively. The detector wavelength was set at 275 nm. The retention time of phenol was 4.8 min.

4-CP: The samples were filtered with 0.22 μ m polyethersulfone syringe membrane filter to determine the 4-CP concentration via HPLC (Agilent 1260 Infinity II, USA) with an Agilent InfinityLab Poroshell 120 EC-C18 column (4.6 \times 150 mm, 4 μ m). The mobile phase was a mixture of 70% methanol and 30% water. The flow rate and injection volumes were 0.5 mL/min and 10 μ L, respectively. The detector wavelength was set at 280 nm. The retention time of 4-CP was 5.2 min.

2,4-DCP: The samples were filtered with 0.22 μ m polyethersulfone syringe membrane filter to determine the 2,4-DCP concentration via HPLC (Agilent 1260 Infinity II, USA) with an Agilent InfinityLab Poroshell 120 EC-C18 column (4.6 \times 150 mm, 4 μ m). The mobile phase was a mixture of 70% methanol and 30% water. The flow rate and injection volumes were 0.5 mL/min and 10 μ L, respectively. The detector wavelength was set at 220 nm. The retention time of 2,4-DCP was 7.2 min.

2,4,6-TCP: The samples were filtered with 0.22 μ m polyethersulfone syringe membrane filter to determine the 2,4,6-TCP concentration via HPLC (Agilent 1260 Infinity II, USA) with an Agilent InfinityLab Poroshell 120 EC-C18 column (4.6 \times 150 mm, 4 μ m). The mobile phase was a mixture of 80% methanol and 20% water.

The flow rate and injection volumes were 1.0 mL/min and 20 μ L, respectively. The detector wavelength was set at 290 nm. The retention time of 2,4,6-TCP was 3.4 min.

TC: The samples were filtered with 0.22 μ m polyethersulfone syringe membrane filter to determine the TC concentration via HPLC (Agilent 1260 Infinity II, USA) with an Agilent InfinityLab Poroshell 120 EC-C18 column (4.6 \times 150 mm, 4 μ m). The mobile phase was a mixture of 20% acetonitrile and 80% water with 0.1% formic acid. The flow rate and injection volumes were 1.0 mL/min and 20 μ L, respectively. The detector wavelength was set at 280 nm. The retention time of TC was 3.4 min.

Text S2 Density functional theory (DFT) calculation

In this section, theoretical calculations were further carried out to investigate the influence of thickness and nitrogen-vacancy (NV) of g-C₃N₄ on the electronic characteristics by the spin-polarized density functional theory (DFT) method implemented in the Vienna ab-initio simulation package (VASP)¹. The g-C₃N₄ model was constructed based on the crystal structure with lattice parameters of a=b=7.38 Å, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$ (see Fig. S10A)². As shown in Fig. S10B, a 2×2×1 supercell was then built up based on the unit cell, while monolayer and four layers of g-C₃N₄ were selected as the computational models of thin and thick g-C₃N₄ materials, respectively. A 15 Å vacuum was added in the Z direction to avoid the periodicity-induced effect. The exchange-correlation functional of Perdew-Burke-Ernzerhof (PBE) within Generalized Gradient Approximation (GGA) was employed to describe the exchangecorrelation energy ³, and the energy cut-off was set at 500 eV. Moreover, the D3 vdW correction proposed by S. Grimme was also employed in considering the dispersive interaction in the calculation process ^{4, 5}. All the atoms were fully relaxed when the Hellmann-Feynman force was less than 0.01 eV/Å, and the energy convergence criteria was set to 10⁻⁵ eV. For geometric optimization, the Brillouin-zone integrations were sampled with the $3 \times 3 \times 1$ k-point set of Monkhorst-Pack scheme. For the density of state (DOS) calculations, Brillouin-zone integrations were performed using the G-centered $7 \times 7 \times 1$ k mesh.

Text S3 Results and discussion

Text S3.1 XRD spectrum analysis

The X-ray powder diffractometer (XRD) pattern (**Fig. 2B** in the main text) of B-C₃N₄ had two strong peaks at 27.4° and 13.3°, corresponding to the (002) and (100) crystal planes, respectively. As for the few-layer g-C₃N₄ nanosheet, the peak (002) decreased, while the peak (100) almost disappeared, indicating the poor condensation degree and reduced dimension structure ⁶. A new peak at 18.5° was observed from the XRD pattern of the few-layer g-C₃N₄ nanosheet, indexed to the plane (310) of heptazine-based g-C₃N₄ ⁷. The appearance of the strong peak (310) indicated the basic units of the few-layer g-C₃N₄ nanosheet were heptazine (tri-s-triazine).

Text S3.2 FT-IR spectrum analysis

The FT-IR spectrum (**Fig. S8A**) for B-C₃N₄ showed several peaks at 3000-3500 cm⁻¹, 1200-1700 cm⁻¹, and 808 cm⁻¹, corresponding to N-H/O-H, CN heterocycles stretching vibrations, and characteristic breathing mode of tri-s-triazine, respectively ⁸. Compared to the B-C₃N₄, a new peak at 2175 cm⁻¹ appeared on the Fourier transform infrared (FT-IR) spectrum of few-layer g-C₃N₄ nanosheet (**Fig. S8B**), corresponding to the asymmetric vibration of $-C\equiv N^{-9}$. The presence of the $-C\equiv N$ group was attributed to the nitrogen loss from the tri-s-triazine heterocycles open process, revealing the existence of NVs in the few-layer g-C₃N₄ nanosheet ⁹.

Text S3.3 DFT analysis

The theoretical calculation was taken to investigate the influence of thickness and NV of $g-C_3N_4$ on the electronic characteristics. The optimized monolayer and multilayer structures of pure $g-C_3N_4$ were shown in **Fig. S11A**. In general, the bond

distance of C-N was 1.35 Å and the \angle NCN angle were 123.51° and 123.29° for mono- and multilayer g-C₃N₄, respectively. The density of states (DOS) plots for mono- and multilayer g-C₃N₄ were presented in **Fig. 5A** and **Fig. 5B**, respectively. It could be observed that the VB edge of the monolayer was mainly contributed by N 2p orbital, and the CB edge was composed of C 2p and N 2p orbitals, which was consistent with previous studies ¹⁰. Whereas, for the multilayer pure g-C₃N₄ system, both VB and CB edges were occupied by C 2p and N 2p orbitals. In addition, the calculated bandgap of monolayer g-C₃N₄ (1.47 eV) was much narrower than the multilayer system (1.54 eV), which was more conducive to the visible-light absorption.

The influence of NV on the configuration and electronic characteristics of $g-C_3N_4$ was also taken into consideration. As seen in **Fig. S10C**, three kinds of nonequivalent N atoms (noted as N1, N2, and N3) in a heptazine unit were proposed to be the possible sites of NV. Based on this, three kinds of NV systems for $g-C_3N_4$ (abbreviated as $g-C_3N_4$ @NV) were constructed for both mono- and multilayer systems. The formation energies of $g-C_3N_4$ @NV were calculated as follows:

$$E_f = E(g - C_3 N_4 @NV) - [E(g - C_3 N_4) - \mu(N)]$$
(1)

Where $E(g-C_3N_4@NV)$ and $E(g-C_3N_4)$ represented the total energies of g-C_3N_4@NV and g-C_3N_4, respectively, and the $\mu(N)$ denoted the chemical potential of single N atom.

The optimized structures and mono- and multilayer $g-C_3N_4$ @NV systems were depicted in **Fig. S11B** and **Fig. S11C**, respectively, and the corresponding formation energies were summarized in **Table S3**. It could be noticed that the formation energies of N3 vacancy on the mono- and multilayer $g-C_3N_4$ were 2.69 and 2.91 eV, respectively, which were much more negative than the corresponding N1 and N2

vacancies. This meant that the N3 vacancy systems were more favorable from the perspective of formation energies, which was consistent with the XPS analysis. Thus, the subsequent discussions were based on these two configurations. Firstly, it could be observed from Fig. S11B and Fig. S11C that the C-N bond lengths of the heptazine containing NV decreased (1.27 Å in monolayer g- C_3N_4 @NV and 1.23 Å in multilayer g-C₃N₄(∂ NV) compared with the corresponding pure g-C₃N₄ systems. And the ∠NCN bond angles were reduced to 119.66° and 116.85° for mono- and multilayer g-C₃N₄(a)NV, respectively. These configurations suggested that the incorporation of NV induced partial distortion of triazine ring for both mono- and multilayer g-C₃N₄, which was beneficial for the separation of charge-carriers ¹¹. The density of states of mono- and multilayer g-C₃N₄@NV were investigated in Fig. 5C and Fig. 5D. The bandgap of monolayer g-C₃N₄@NV narrowed to 0.57 eV after the introduction of NV. Besides, it was worth mentioning that the incorporation of NV into monolayer g-C₃N₄@NV introduced additional mid-gap state at the bottom of the CB (labeled in black dotted line), which was mainly contributed by C 2p and N 2p orbitals. There was also a distinct reorganization of bands due to the existence of NV in the vicinity of the Fermi level (between -1 and 0.5 eV for monolayer g-C₃N₄@NV, between -1.5 and -1 eV for multilayer g-C₃N₄(∂ NV) in the PDOS plots ¹². These results were got corroborated mutually in UV-vis DRS analysis showing that the introduction of NV led to a lowering of bandgap energy.

Text S3.4 Analysis of possible degradation pathway toward 2,4,6-TCP

To understand the photocatalytic degradation of chlorophenol pollutants by the few-layer $g-C_3N_4$ nanosheet, the intermediate samples from the photocatalysis degradation of 2,4,6-TCP were detected using HPLC-MS spectra (Ultimate 3000 UHPLC-Q Exactive HPLC-MS). As shown in **Fig. S13A**, before the photocatalysis,

only one sample was detected at 8.47 min, which was assigned to 2,4,6-TCP itself (**Fig. S13B**). After reaction for 1 h, two types of possible intermediate samples were found at 4.10 min and 2.44 min, respectively. According to the mass-to-charge ratios (m/z) analysis and previous reports ¹³, the intermediate samples at 4.10 min and 2.44 min were assigned to 2,6-dichlorohydroquinone (2,6-DCHQ) (**Fig. S13C**) and 2,6-dichloro-3-hydroxy-1,4-benzoquinone (2,6-DCHB) (**Fig. S13D**), respectively. After 24 h of continuous photocatalytic degradation, only the 2,6-DCHB could be detected. Based on the discussion above, the possible degradation pathway of 2,4,6-TCP by the few-layer g-C₃N₄ nanosheet was shown in **Fig. S13E**. In the degradation process of 2,4,6-TCP over the few-layer g-C₃N₄ nanosheet, the 2,4,6-TCP was firstly destructed by \cdot O₂-/ *h*⁺/¹O₂ species through a dechlorination process and oxidized to be 2,6-DCHQ, followed by a hydroxylation process to be 2,6-DCHB. By this degradation path, the 2,4,6-TCP was oxidized and mineralized by step to environment-friendly small-molecular compounds, CO₂ and H₂O ¹⁴.

Fig. S1 (A) Photocatalytic activities for the degradation of BPA over different B-C₃N₄ materials ($C_{BPA} = 10 \text{ mg L}^{-1}$, Dosage = 20 mg, Volume = 50 mL, T = 298.15 K, 380 nm $\leq \lambda \leq$ 780 nm); (B) Reaction rate constants according to the first-order kinetics and corresponding conversion rates (the samples 1, 2, 3, 4 refer to the B-C₃N₄ derived from urea, cyanamide, dicyandiamide, and melamine, respectively).

Fig. S2 (A) Photocatalytic activities for the degradation of BPA over different fewlayer g-C₃N₄ nanosheets ($C_{BPA} = 10 \text{ mg L}^{-1}$, Dosage = 20 mg, Volume = 50 mL, T = 298.15 K, 380 nm $\leq \lambda \leq$ 780 nm); (B) Reaction rate constants according to the firstorder kinetics (the samples 1, 2, 3, 4 refer to the few-layer g-C₃N₄ nanosheets prepared at 450, 500, 550, 650 °C, respectively).

Fig. S3 (A) Photocatalytic activities for the degradation of BPA over different B-C₃N₄ materials ($C_{BPA} = 10 \text{ mg L}^{-1}$, Dosage = 20 mg, Volume = 50 mL, T = 298.15 K, 380 nm $\leq \lambda \leq 780 \text{ nm}$); (B) Reaction rate constants according to the first-order kinetics in 180 min (the samples 1, 2, 3, 4 refer to the B-C₃N₄ prepared at 450, 500, 550, 650 °C, respectively).

Fig. S4 (A) Photocatalytic activities for the degradation of BPA over different B-C₃N₄ materials ($C_{BPA} = 10 \text{ mg L}^{-1}$, Dosage = 20 mg, Volume = 50 mL, T = 298.15 K, 380 nm $\leq \lambda \leq$ 780 nm); (B) Reaction rate constants according to the first-order kinetics and corresponding conversion rates in 180 min (the samples 1, 2, 3 refer to the B-C₃N₄, B-C₃N₄-F, B-C₃N₄-OH, respectively).

Fig. S5 (A-C) SEM images and (D-F) TEM images of the template RUB-15.

Fig. S6 (A) SEM image, (B) AFM image, and (C) corresponding thickness analysis taken around the white line in (B) of few-layer $g-C_3N_4$ nanosheet; (D) SEM image, (E) AFM image, and (F) corresponding thickness analysis taken around the white line in (F) of $B-C_3N_4$.

Fig. S7 (A-C) SEM images and (D-F) TEM images of B-C₃N₄.

Fig. S8 (A) FT-IR spectra, (C) enlarged view of FT-IR, and (C) XPS survey spectra of $B-C_3N_4$ and few-layer g-C₃N₄ nanosheet.

Fig. S9 (A) XRD spectra of the fresh $g-C_3N_4$ nanosheet and the product after five catalysis cycles; SEM images of the few-layer $g-C_3N_4$ nanosheet (B) before and (C) after being used for five cycles.

Fig. S10 (A) Lattice parameters for the unit cell; (B) Geometric models for monolayer and multilayer $g-C_3N_4$; (C) The non-equivalent sites of NV (The C and N atoms were shown as grey and blue spheres, respectively.).

Fig. S11 Optimized structures of (A) monolayer and multilayer $g-C_3N_4$ without nitrogen vacancy, (B) monolayer $g-C_3N_4@NV$, and (C) multilayer $g-C_3N_4@NV$.

Fig. S12 EPR spectra of DMPO- \bullet O₂⁻ from few-layer g-C₃N₄ nanosheet and B-C₃N₄.

Fig. S13 (A) HPLC-MS chromatograms of the intermediate sample from the photocatalysis degradation of 2,4,6-TCP; The mass spectra of (B) 2,4,6-TCP, (C) 2,6-DCHQ, and (D) 2,6-DCHB; (E) Flow diagram of 2,4,6-TCP degradation pathway.

Table S1 BET surface areas of $B-C_3N_4$ and few-layer $g-C_3N_4$ nanosheet.

Samples	BET surface area (m ² g ⁻¹)
B-C ₃ N ₄	19.66
Few-layer g-C ₃ N ₄ nanosheet	40.65

Table S2 Element content and atomic ratio of $B-C_3N_4$ and few-layer $g-C_3N_4$ nanosheet.

Samples	C (%)	N (%)	0 (%)	O/C	N/C
B-C ₃ N ₄	40.23	57.02	2.48	0.06	1.42
Few-layer g-C ₃ N ₄ nanosheet	42.24	45.73	9.11	0.22	1.08

Model	Site	Formation energies/eV
Monolayer g-C ₃ N ₄	Site 1	5.02
	Site 2	3.31
	Site 3	2.69
Multilayer g-C ₃ N ₄	Site 1	3.95
	Site 2	3.28
	Site 3	2.91

Table S3 The calculated formation energies of monolayer and multilayer g-C $_3N_4$ (2) NV.

Photocatalysts	Organic	Reaction	Experin	nental conditions	Ref	
Thotocatarysts	contaminants	rate (h ⁻¹)	<i>T</i> (°C)	$T(^{\circ}C) \text{Dosage}(g L^{-1}) C_0(mg L^{-1})$		
UWCN	BPA	2.502	25	0.2	20	15
CeO ₂ /CNNS-3	BPA	2.004	25	1.0	10	16
Carbon-defect-modified g-C ₃ N ₄	BPA	0.336	25	0.3	10	17
Few-layer g-C ₃ N ₄ nanosheet	BPA	3.162	25	0.4	10	This work
Phosphorus- and Sulfur-Codoped g-C ₃ N ₄	TC	2.293	-	1.0	10	18
h-BN/g-C ₃ N ₄ heterojunction	TC	1.665	-	1.0	10	19
S-CQDs/hollow tubular g-C ₃ N ₄	TC	1.758	-	1.0	20	20
Few-layer g-C ₃ N ₄ nanosheet	ТС	4.629	25	0.4	10	This work
CdS(10 wt%)/g-C ₃ N ₄	4-CP	0.064	-	1.0	20	21
ZnO/g-C ₃ N ₄	4-CP	0.186	25	0.2	10	22
Few-layer g-C ₃ N ₄ nanosheet	4-CP	0.158	25	0.4	10	This work

Table S4 Comparative study of the photocatalytic performance of other C_3N_4 -based photocatalysts under similar conditions.

$Ag_2CrO_4/Ag/g$ - C_3N_4	2,4-DCP	0.910	-	1.0	10	23
Few-layer g-C ₃ N ₄ nanosheet	2,4-DCP	0.347	25	0.4	10	This work
$BiOIO_3/g-C_3N_4-30$ wt%	2,4,6-TCP	0.970	-	-	50	24
Few-layer g-C ₃ N ₄ nanosheet	2,4,6-TCP	0.352	25	0.4	10	This work
$LaCoO_3/g-C_3N_4-20 \text{ wt\%}$	Phenol	0.100	25	1.0	20	25
$LaCoO_3/g-C_3N_4-30 \text{ wt\%}$	Phenol	0.050	-	1.0	20	25
$LaCoO_3/g-C_3N_4-40 \text{ wt\%}$	Phenol	0.150	-	1.0	20	25
$LaCoO_3/g-C_3N_4-50 \text{ wt\%}$	Phenol	0.060	-	1.0	20	25
$LaCoO_3/g-C_3N_4-60 \text{ wt\%}$	Phenol	0.390	-	1.0	20	25
$LaCoO_3/g-C_3N_4-70$ wt%	Phenol	0.230	-	1.0	20	25
Few-layer g-C ₃ N ₄ nanosheet	Phenol	0.208	25	0.4	10	This work

References

- 1. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- C. L. Zhang, Y. Liu, X. Li, H. X. Chen, T. Wen, Z. H. Jiang, Y. J. Ai, Y. B. Sun, T. Hayat and X. K. Wang, Highly uranium elimination by crab shells-derived porous graphitic carbon nitride: Batch, EXAFS and theoretical calculations, *Chem. Eng. J.*, 2018, 346, 406-415.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 154104.
- 5. S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *J. Comput. Chem.*, 2011, **32**, 1456-1465.
- 6. F. Guo, B. Hu, C. Yang, J. Zhang, Y. Hou and X. Wang, On-Surface Polymerization of In-Plane Highly Ordered Carbon Nitride Nanosheets toward Photocatalytic Mineralization of Mercaptan Gas, *Adv. Mater.*, 2021, **33**, 2101466.
- Q. Dong, N. Mohamad Latiff, V. Mazánek, N. F. Rosli, H. L. Chia, Z. Sofer and M. Pumera, Triazine- and Heptazine-Based Carbon Nitrides: Toxicity, ACS Appl. Nano Mater., 2018, 1, 4442-4449.
- 8. R. Dadigala, R. Bandi, B. R. Gangapuram and V. Guttena, Carbon dots and Ag nanoparticles decorated g-C₃N₄ nanosheets for enhanced organic pollutants degradation under sunlight irradiation, *J. Photochem. Photobiol.*, *A*, 2017, **342**, 42-52.
- H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution, *Adv. Mater.*, 2017, 29, 1605148.
- 10. B. Zhu, L. Zhang, B. Cheng and J. Yu, First-principle calculation study of tri-s-triazine-based g-C₃N₄: A review, *Appl. Catal.*, *B*, 2018, **224**, 983-999.
- 11. H. Wang, X. Zhang, J. Xie, J. Zhang, P. Ma, B. Pan and Y. Xie, Structural distortion in graphitic-C₃N₄ realizing an efficient photoreactivity, *Nanoscale*, 2015, **7**, 5152-5156.
- 12. J. Goclon and K. Winkler, Influence of nitrogen vacancies on selective oxidation of aromatic alcohols on g-C₃N₄: A comparative DFT study, *Mol. Catal.*, 2020, **482**, 110747.
- 13. H. Ji, F. Chang, X. Hu, W. Qin and J. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C₃N₄ under visible light irradiation, *Chem. Eng. J.*, 2013, **218**, 183-190.
- H. Wang, H. Guo, N. Zhang, Z. Chen, B. Hu and X. Wang, Enhanced Photoreduction of U(VI) on C₃N₄ by Cr(VI) and Bisphenol A: ESR, XPS, and EXAFS Investigation, *Environ. Sci. Technol.*, 2019, 53, 6454-6461.
- M. Zhang, Y. Yang, X. An, J. Zhao, Y. Bao and L.-a. Hou, Exfoliation method matters: The microstructure-dependent photoactivity of g-C₃N₄ nanosheets for water purification, *J. Hazard. Mater.*, 2022, 424, 127424.
- R. Ma, S. Zhang, L. Li, P. Gu, T. Wen, A. Khan, S. Li, B. Li, S. Wang and X. Wang, Enhanced Visible-Light-Induced Photoactivity of Type-II CeO₂/g-C₃N₄ Nanosheet toward Organic Pollutants Degradation, ACS Sustainable Chem. Eng., 2019, 7, 9699-9708.
- X. Liang, G. Wang, X. Dong, G. Wang, H. Ma and X. Zhang, Graphitic Carbon Nitride with Carbon Vacancies for Photocatalytic Degradation of Bisphenol A, ACS Appl. Nano Mater., 2019, 2, 517-524.
- L. Jiang, X. Yuan, G. Zeng, X. Chen, Z. Wu, J. Liang, J. Zhang, H. Wang and H. Wang, Phosphorus- and Sulfur-Codoped g-C₃N₄: Facile Preparation, Mechanism Insight, and Application as Efficient Photocatalyst for Tetracycline and Methyl Orange Degradation under Visible Light Irradiation, ACS Sustainable Chem. Eng., 2017, 5, 5831-5841.
- 19. L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang and H. Wang, Metalfree efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant, *Appl. Catal.*, *B*, 2018, **221**, 715-725.
- W. Wang, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, C. Zhou, W. Xiong, Y. Yang, L. Lei, Y. Liu, D. Huang, M. Cheng, Y. Yang, Y. Fu, H. Luo and Y. Zhou, Sulfur doped carbon quantum dots loaded hollow tubular g-C₃N₄ as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light, *Chem. Eng. J.*, 2019, **378**, 122132.

- H. Shi, X. Jiang, Y. Li, D. Chen, C. Hou, Z. Zhang, Q. Zhang and J. Shen, Enhanced biophotodegradation of p-chlorophenol by CdS/g-C₃N₄ 3D semiconductor-microbe interfaces, *Sci. Total Environ.*, 2022, 807, 151006.
- J. G. M. de Sousa, T. V. C. da Silva, N. P. de Moraes, M. L. Caetano Pinto da Silva, R. da Silva Rocha, R. Landers and L. A. Rodrigues, Visible light-driven ZnO/g-C₃N₄/carbon xerogel ternary photocatalyst with enhanced activity for 4-chlorophenol degradation, *Mater. Chem. Phys.*, 2020, 256, 123651.
- 23. Y. Gong, X. Quan, H. Yu and S. Chen, Synthesis of Z-scheme Ag₂CrO₄/Ag/g-C₃N₄ composite with enhanced visible-light photocatalytic activity for 2,4-dichlorophenol degradation, *Appl. Catal.*, *B*, 2017, **219**, 439-449.
- Y. Gong, X. Quan, H. Yu, S. Chen and H. Zhao, Enhanced photocatalytic performance of a twodimensional BiOIO₃/g-C₃N₄ heterostructured composite with a Z-scheme configuration, *Appl. Catal.*, *B*, 2018, 237, 947-956.
- 25. Z. Jin, R. Hu, H. Wang, J. Hu and T. Ren, One-step impregnation method to prepare direct Z-scheme LaCoO₃/g-C₃N₄ heterojunction photocatalysts for phenol degradation under visible light, *Appl. Surf. Sci.*, 2019, **491**, 432-442.