Supplementary Information

Interplay of metal-based nanoparticles with plant rhizosphere microenvironment: Implications for nanosafety and nano-enabled sustainable agriculture

Quanlong Wang^a, Peng Zhang^{*b,c}, Weichen Zhao^a, Yuanbo Li^a, Yaqi Jiang^a, Yukui Rui^{*a,d,e}, Zhiling Guo^c, Iseult Lynch^c

^a Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

^b Department of Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom.

^c School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

^d China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China.

^e China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Shanghe County, Jinan, Shandong, China.

*Corresponding author: ruiyukui@163.com (Y. R.); p.zhang.1@bham.ac.uk (P. Z.)

Soil	NMs types	Concentration	Size	Incubation time	Plant types	Effects	Reference
property							
Soil pH	Ag NPs	0.025, 0.25 and	20.4±3.2	20 days	Zea mays L.	Under the treatment of 2.5 mg/kg Ag NPs, soil pH	1
		2.5 mg/kg	nm			significantly increased from 8.64 to 8.72.	
	Ag NPs	10 mg/kg	7–14 nm	72 weeks	Tomato	Ag NPs did not significantly alter soil pH.	2
	Ag NPs	1, 10, and 50	15 nm	7, and 63 days	Lactuca	Under short-term exposure (7 days) to Ag NPs, soil	3
		mg/kg			sativa	pH increased significantly from 7.70 to 7.87.	
						However, soil pH was not changed significantly	
						under Ag NPs at 63 days.	
	Ag NPs	100 mg/kg	20 nm	60 days	Cucumber	Ag NPs increased soil pH from 5.18 to 5.26.	4
					(Cucumis		
					sativa)		
	GSNPs,	20, 25, 50, and	_	60 days	P. vulgaris	CSNPs and CSNPs increased soil pH, and the degree	5
	CSNPs	100 mg/kg				of variation depended on the concentration and type	
						of NPs.	
	CeO ₂ NPs	25 mg/kg	25 nm	150 days	Rice	CeO ₂ NPs affected soil pH with negligible regardless	6

Table S1 Effect of metal-based nanomaterials on rhizosphere soil chemical properties.

					of the presence or absence of Fe ²⁺ .	
ZnO NPs	200, 500, and	50 nm	30 days	Pokeweed	Soil pH increased from 7.5 to 8.0 under ZnO NPs ⁷	
	1000 mg/kg				exposure.	
ZnO NPs	1.7 mg Zn/kg	Length:	After wheat full	Wheat	In either arid or non-arid soil, the application of ZnO ⁸	
		400 nm;	maturity	(Triticum	NPs did not alter the soil pH.	
		width:		aestivum L.)		
		150 nm				
ZnO NPs	20, 225, 450,	68±12	35 days	Wheat, maize,	After 24 h of contamination with ZnO NPs, the soil ⁹	
	and 900 mg	nm		radish, bean,	pH increased slightly with increasing Zn	
	Zn/kg			lettuce,	concentration. In the subsequent 35-day plant culture	
				tomato, pea,	test, no significant changes in soil pH occurred	
				cucumber,	regardless of plant type.	
				and beet.		
ZnO NPs	0, and 500	30 nm	9 weeks	Maize	ZnO NP decreased soil pH from 8.36 to 7.99 without	0
	mg/kg				additional P, but increased pH from 8.35 to 8.54 of	
					inoculated soil with the addition of 50 mg/kg P.	
ZnO NPs	0, 50, and 500	30±10	1 month	Maize	ZnO NPs increased soil pH in a dose-dependent ¹¹	1

		ZnO mg/kg	nm			manner.	
Soil	Ag NPs	0.025, 0.25 and	20.4±3.2	20 days	Zea mays L.	2.5 mg/kg Ag NPs decreased the content of DOC by	1
organic		2.5 mg/kg	nm			23.42%.	
matter							
	GSNPs,	20, 25, 50, and	-	60 days	P. vulgaris	SNPs significantly increased total organic carton,	5
	CSNPs	100 mg/kg				being greatest for GSNP50 (61.9%).	
	Ag NPs	1, 10, and 100	-	4 weeks	Arabidopsis	Ag NPs significantly increased the content of humic	12
		mg/kg			thaliana Col-	substances.	
					0		
	Ag NPs	100 mg/kg	20 nm	60 days	Cucumber	Ag NPs did not alter the content of soil DOC.	4
					(Cucumis		
					sativa)		
	CeO ₂ NPs	25 mg/kg	25 nm	150 days	Rice	CeO2 NPs affected DOC content and soil organic	6
						matter with negligible regardless of the presence or	
						absence of Fe ²⁺ .	
	ZnO NPs	200, 500, and	50 nm	30 days	Pokeweed	ZnO NPs did not significantly altered the content of	7
		1000 mg/kg				soil organic cardon.	

Soil	Ag NPs	0.025, 0.25 and	20.4±3.2	20 days	Zea mays L.	2.5 mg/kg Ag NPs decreased the AP content by 4.7%.	1
nutrients		2.5 mg/kg	nm				
	Ag NPs	10 mg/kg	7–14 nm	72 weeks	Tomato	Ag NPs decreased the availability of soil N, P and K,	2
						significantly.	
	Ag NPs	100 mg/kg	20 nm	60 days	Cucumber	The bioavailable fraction of the essential elements	4
					(Cucumis	increased significantly with the presence of Ag NPs.	
					sativa)		
	GSNPs,	20, 25, 50, and	_	60 days	P. vulgaris	SNPs significantly increased N and P availability, and	5
	CSNPs	100 mg/kg				the degree of variation depended on the concentration	
						and type of NPs.	
	CeO ₂ NPs	25 mg/kg	25 nm	150 days	Rice	CeO_2 NPs decreased the content of NO_3 -N by	6
						70.59%. But, the co-exposure of NPs and Fe^{2+}	
						increased the content of NH_4^+ -N by 52%.	
	ZnO NPs	200, 500, and	50 nm	30 days	Pokeweed	500 mg/kg ZnO NPs decreased soil AP content by	7
		1000 mg/kg				27.27%, but did not alter total N and $\rm NH_4^+-N$ content,	
						significantly.	
	ZnO NPs	1.7 mg Zn/kg	Length:	After wheat full	Wheat	In either arid or non-arid soil, the addition of ZnO	8

			400 nm; width:	maturity	(Triticum aestivum L.)	NPs did not alter the content of soil NH_4^+ -N, NO_3^- -N, and P.	
	ZnO NPs	0, and 500 mg/kg	150 nm 30 nm	9 weeks	Maize	In soil without additional P addition, ZnO NPs did not alter the soil AP content, significantly. But, ZnO NPs	10
						reduced the AP content by 50.36% in the presence of exogenous P (50 mg/kg) and AMF.	
Toxic	Ag NPs	0.025, 0.25 and	20.4±3.2	20 days	Zea mays L.	Soil soluble Ag significantly increased.	1
metal		2.5 mg/kg	nm		_		2
	Ag NPs	1, 10, and 50 mg/kg	15 nm	7, and 63 days	Lactuca sativa	Soil extractable Ag increased significantly, was concentration-dependent, and varied over time	3
	Nano-	300 mg/kg	Nano-	30 days	H. vulgare L.	Under ENPs co-exposure, the extractable metal	13
	ZnO,		ZnO:		(cultivar Ella)	concentrations in soil were lower than under single	
	Nano-		50±10			treatments.	
	CuO		nm;				
			Nano-				
			CuO:				

		100±25				
		nm				
CeO ₂ NPs	25 mg/kg	25 nm	150 days	Rice	Fe ²⁺ promoted the accumulation of residual Ce in soil	6
					compared to individual CeO ₂ NPs.	
ZnO NPs	200, 500, and	50 nm	30 days	Pokeweed	ZnO NPs exposure significantly increased soil Zn^{2+}	7
	1000 mg/kg				content.	
ZnO NPs	1.7 mg Zn/kg	Length:	After wheat full	Wheat	Under drought conditions, Zn NPs significantly	8
		400 nm;	maturity	(Triticum	increased the soil residual Zn content, but in non-arid	
		width:		aestivum L.)	soils, the effect was not significant.	
		150 nm				
ZnO NPs	3, 20, and 225	57±32	Aging for 1 year;	Green pea	The exposure of high-dose ZnO NPs significantly	14
	mg Zn/kg	nm	Plant culture: 30 and	(Pisum	increased the content of potentially available Zn in	
			60 days (green pea),	sativum L.)	both soils, higher in acidic soil than in calcareous	
			60 and 90 days (beet)	and beet (Beta	soils.	
				vulgaris L).		
ZnO NPs	3, 20, and 225	58.40±3	30 days (bean), 90	Bean	The exposure of high-dose ZnO NPs significantly	15
	mg Zn/kg	0.13 nm	days (tomato)	(Phaseolus	increased the content of potentially available Zn in	

				vulgaris) and	both soils, much higher in acidic soil than in	
				tomato	calcareous soils.	
				(Solanum		
				lycopersicon)		
ZnO NPs	20, 225, 450,	68±12	35 days	Wheat,	In acidic soils, ZnO NPs increased the content of	9
	and 900 mg	nm		maize, radish,	bioavailable Zn in a dose-dependent manner, and it	
	Zn/kg			bean, lettuce,	varies in the rhizosphere soil of different plant	
				tomato, pea,	species.	
				cucumber,		
				and beet.		
ZnO NPs	25, 50, 75, and	20–30	125 days	Wheat	ZnO NPs inhibited the toxicity of Cd on plants.	16
	100 mg/kg	nm				
ZnO NPs	25, 50, and 100	20-30	125 days	Wheat	With increasing levels of ZnO NPs, the mobility of	17
	mg/kg	nm			Cd in soil decreased significantly.	
ZnO NPs	10, 100, and	100 nm	30 days	Cucumber	Organic matter and the dose and source of Zn	18
(coated	1000 mg/kg	(coated			changed the distribution of ZnO among soil five	
and non-		ZnO			fractions.	

Note: GSNPs, green silver nanoparticles; CSNPs, conventionally synthesized silver nanoparticles; SNPs, silver nanoparticles; AMF, arbuscular mycorrhizal fungi;

DOC, dissolved organic cardon; AP, available P.

Туре	of	NMs	Concent	ration	Size	Incubation	Plant types	Effects	Reference
microorganis	sm	types				time			
Fungi		Ag NPs	0.025,	0.25	20.4±3.2	20 days	Zea mays L.	2.5 mg/kg Ag NPs significantly decreased the diversity of	1
			and 2.5 r	ng/kg	nm			AMF community, changed community structure, and	
								decreased the mycorrhizal colonization of AMF.	
		ZnO NPs	0, 50,	250,	30 nm	9 weeks	Sweet	Cd and ZnO NPs alone or in combination reduced the root	19
			and 500	nm			sorghum	colonization rate of AMF.	
		ZnO NPs	0, and	500	30 nm	9 weeks	Maize	ZnO NPs decreased root colonization rate of AMF.	10
			mg/kg						
		ZnO NPs	0, 50, an	d 500	30±10 nm	1 month	Maize	ZnO NPs alone or in combination with MPs affected the	11
			ZnO mg/	/kg				structure and diversity of AMF community.	
		TiO ₂	1, 100,	and	29±9 nm;	12 weeks	Wheat	TiO ₂ NPs did not affect root colonization rate of AMF.	20
		NPs	1000 mg	/kg	92±31 nm				
Bacteria		GSNPs,	20, 25,	50,	-	60 days	P. vulgaris	GSNPs significantly increased the counts of total bacteria,	5
		CSNPs	and	100				nitrogen fixing and phosphate solubilizing bacteria.	
			mg/kg						

Table S2 Effect of metal-based nanomaterials on rhizosphere microorganism.

Ag NPs	1 and 3 mg/kg	10–12 nm	14 d	Wheat	Ag NPs or combined treatments with glyphosate reduced	21
					rhizosphere soil bacterial Alpha-diversity and richness,	
					and significantly altered the microbial community	
					structure.	
Ag NPs	1 mg/kg	9–10 nm	0, 2, 7, 21,	Wheat	Ag NPs could significantly affect soil bacterial community	22
			35 and 49		structure, most prominently during the period of transition	
			days		from wheat seedling stage to vegetative stage.	
Ag NPs	1, 10, and 100	_	4 weeks	Arabidopsis	Altered microbial structure by Ag NPs led to a significant	12
	mg/kg			thaliana	decrease in the functional diversity. And the activities of	
				Col-0	plant growth-promoting bacteria changed.	
Ag NPs	1, 10, and 50	15 nm	7, and 63	Lactuca	Ag NPs altered the structure of bacterial community by	3
	mg/kg		days	sativa	regulating bacterial populations associated with elemental	
					cycling and stress tolerance.	
Ag NPs	1 mg/kg	20 nm	120 days	Rice	1 mg/kg Ag NPs had no significant effect on the bacterial	23
					community diversity, but significantly reduced their	
					richness.	
Ag NPs	100 mg/kg	20 nm	60 days	Cucumber	Ag NPs significantly reduced microbial community	4

				(Cucumis	richness, and altered bacterial community composition.	
				sativa)		
CeO ₂	25 mg/kg	25 nm	150 days	Rice	CeO_2 NPs did not affect α -diversity of bacterial	6
NPs					community, but the combined exposure of Fe^{2+} and CeO_2	
					NPs decreased α -diversity of bacterial community. In	
					addition, CeO2 NPs changed bacterial community	
					composition.	
ZnO NPs	200, 500, and	50 nm	30 days	Pokeweed	The bacterial community structure at the phylum and	7
	1000 mg/kg				genus levels was altered upon ZnO NPs exposure. Among	
					them, the relative abundance of bacterial taxa associated	
					with hydrocarbon-degradation was significantly reduced.	
ZnO NPs	0, 1, 10, and	90 nm	7 weeks	Lettuce	Despite no change of alpha diversity, 10 mg/kg ZnO NPs	24
	100 mg			(Lactuca	altered the soil bacterial community structure.	
	ZnO/kg			sativa L.)		

Table S3 Effects of metal-based nanomaterials on soil enzyme activities.

NMs types	Concentration	Size	Incubation	Plant types	Effects	Reference
			time			
Ag NPs	0.025, 0.25	20.4±3.2	20 days	Zea mays L.	2.5 mg/kg Ag NPs decreased soil alkaline phosphatase activity by 4.24%.	1
	and 2.5 mg/kg	nm				
Ag NPs	0.024, 0.24,	10–40 nm	28 days	The wetland	4.80 and 9.6 $\mu g/g$ Ag NPs inhibited the exoenzyme activities, but the effects	25
	4.80 and 9.6			plants (I.	of 0.024 $\mu\text{g/g}$ Ag NPs on the exoenzyme activities correlated with plant	
	mg/kg			wilsonii, A.	types.	
				donax, and		
				Т.		
				orientalis)		
Ag NPs	10 mg/kg	7–14 nm	72 weeks	Tomato	Ag NPs decreased the activities of urease and phosphatase, significantly.	2
GSNPs,	20, 25, 50,	_	60 days	P. vulgaris	SNPs significantly increased urease activity. Among them, 50 mg/kg GSNP	5
CSNPs	and 100				increased its activity by 9.66%.	
	mg/kg					
Ag NPs	1, 10, and 100	_	4 weeks	Arabidopsis	100 mg/kg Ag NPs significantly altered soil enzyme activities. Among	12
	mg/kg			thaliana	them, the activities of enzymes (cellulase activity, amylase activity, and	

				Col-0	protease activity) responsible for depolymerizing complex organic matter
					were increased in a dose-dependent manner, but the activities of
					dehydrogenase activity and keratinase activity were decreased.
CeO ₂ NPs	25 mg/kg	25 nm	150 days	Rice	Compared to control, CeO ₂ NPs increased invertase and dehydrogenase ⁶
					activities, but suppressed cellulase activity. However, the presence of Fe ²⁺
					mitigated the effects of the nanoparticles.
ZnO NPs	200, 500, and	l 50 nm	30 days	Pokeweed	Enzyme activities associated with the carbon cycle (glucosidase activity) ⁷
	1000 mg/kg				were enhanced upon ZnO NPs exposure.
ZnO NPs	0, 50, 250	, 30 nm	9 weeks	Sweet	High doses of ZnO NPs inhibited the activities of urease, phosphatase and 19
	and 50)		sorghum	catalase, but the addition of Cd alleviated the inhibitory impact of ZnO NPs.
	mg/kg				

NMs types	Concentration	Size	Incubation	Plant types		Effects	Reference
			time				
Ag NPs	0.025, 0.25 and	20.4±3.2	20 days	Zea mays L.		2.5 mg/kg Ag NPs decreased plant root biomass,	1
	2.5 mg/kg	nm				significantly.	
CuO-NPs,	20, 200, and	CuO-NPs:	40 days	Tomato		CuO-NPs and Al ₂ O ₃ -NPs significantly increased total	26
Al ₂ O ₃ -NPs	2000 mg/kg	18 nm;				soluble protein in the root; CuO-NPs inhibited the root/shoot	
		Al ₂ O ₃ -				length in a dose-dependent manner except 200 $\mu\text{g/g}$ CuO-	
		NPs: 21				NPs in soil significantly increased root length; Al ₂ O ₃ -NPs	
		nm				increased fresh weight of roots and shoots in a dose-	
						dependent manner; NPs caused mass production of the roots	
						ROS, and activated the antioxidant system.	
Ag NPs, Fe	1.53×10 ¹³	Ag NPs:	25 days	Soybean	(Glycine	Ag NPs decreased the dry biomass of plant root, and induced	27
NPs	NPs/m ² Ag	81.84±0.6		max)		oxidative stress of plant roots, but Ag NPs did not cause root	
	NPs, 2.35×10 ¹¹	7 nm; Fe				length changes and the upregulation of genes related to	
	NPs/m ² Fe NPs	NPs:				lignification in soybean seedlings; Fe NPs triggered	
		207.30±2.				upregulation of POD2 and POD7 genes, but no changes in	

Table S4 Effects of metal-based nanomaterials on plant root function

		0 nm.			root biochemical marker levels were observed.	
Ag NPs	833 mg Ag/kg	48.8±12.6	14 days (<i>T</i> .	T. pratense, and E.	Ag NPs exposure inhibited plant growth, and roots exhibited	28
	dry soil	nm	pratense), and	lanceolatus	severe dysplasia and dark discoloration.	
			21 days (E.			
			lanceolatus)			
Nano-ZnO,	300 mg/kg	Nano-	30 days	H. vulgare L. (cultivar	Under nano-Zn exposure, the accumulation of Zn in the	13
Nano-CuO		ZnO:		Ella)	roots was lower than that in the leaves, while under nano-Cu	
		50±10 nm;			exposure, the accumulation of Cu in the roots was higher	
		Nano-			than in the leaves.	
		CuO:				
		100±25				
		nm				
Cu NPs, Ni	100, 1000, and	Cu NPs:50	7 days	Radish (Raphanus	NPs decreased the length of plants roots. Among them, the	29
NPs, and Zn	10000 mg/kg	nm; Ni		sativus L.)	order of phytotoxicity was Cu NPs, Zn NPs, and Ni NPs.	
NPs		NPs:				
		70–80 nm;				
		Zn NPs:				

		90–150				
		nm				
Cu/Fe based	0.2, 0.1, 0.05,	36 nm	40 days	Tomato	Cu/Fe based NPs evidently increased root weight of tomato	30
nanoparticles	and 0.025 μg				plants.	
	ai/gr soil					
Ag NPs	Ag	22.6±7.8	Lettuce: 52	Chili (Capsicum	Ag NPs significantly reduced the fresh weight of radish	31
	concentration:	nm	days; Radish:	annuum L.), lettuce	roots. Moreover, it had minimal impacts on the contents of	
	10.4±2.1 mg.kg		71 days;	(Lactuca sativa), and	essential elements in the radish roots.	
	(exposed		Chili: 67	radish (Raphanus		
	treatments)		days.	sativus L.)		
Ag NPs	1 mg/kg	9–10 nm	0, 2, 7, 21, 35	Wheat	Ag NPs did not significantly affect wheat root growth.	22
			and 49 days			
Ag NPs	25 mg/kg	25 nm	150 days	Rice	Under the treatment of CeO_2 NPs, the SOD activity was	6
					decreased, and the CAT activity was increased in roots. In	
					addition, the co-exposure of CeO_2 NPs and Fe^{2+} decreased	
					MDA content.	
Ag NPs	1, 10, and 50	15 nm	7, and 63	Lactuca sativa	Ag NPs did not alter root biomass, and Ag contents in plant	3

		mg/kg			days		roots increased before 15 days and subsequently decreased.	
Ag NPs		20, 200,	and	5.6 nm	3 months	Wheat (Triticum	Compared with the control, length and fresh weight of root	32
		2000 mg/k	g			aestivum L.)	decreased with increasing dose of Ag NPs.	
Ag NPs		100 mg/kg	ç	20 nm	60 days	Cucumber (Cucumis	Ag NPs decreased the biomass of cucumber roots,	4
						sativa)	significantly.	
ZnO NP	s	200, 500,	and	50 nm	30 days	Pokeweed	Root length was inhibited under ZnO NPs exposure, but the	7
		1000 mg/k	g				biomass of root was not affected, significantly.	
ZnO	NPs,	50, 500,	1000	ZnO NPs:	20 days, 40	Maize (Zea mays)	ZnO NPs significantly promoted root length of maize at low	33
CuO NP	S	and 2000 r	ng/kg	34±10 nm;	days		concentrations (0.05 and 0.5 mg/g), but ZnO and CuO NPs	
				CuO NPs:			significantly inhibited it at high concentrations (2 mg/g).	
				18.4±5.5			And, similar trends were shown for root dry weight. In	
				nm.			addition, NPs could induce oxidative stress in roots.	
ZnO	NPs,	50, 500,	1000,	3.9–34 nm	30 days	Cucumber (Cucumis	High concentration of NPs significantly inhibited plant root	34
CuO	NPs,	2000, and	4000			sativus)	growth, and induced membrane damage in root tissue and	
Al_2O_3	NPs,	mg/kg					improved the activities of antioxidant enzymes.	
and TiO	2 NPs							
ZnO NP	s	300, 600,	and	Average	90 days	Tomato (Solanum	ZnO NPs increased H ₂ O ₂ and MDA content, and decreased	35

	1000 mg/kg	length:		lycopersicum)	APX and SOD in the root, significantly.	
		148 nm				
ZnO NPs	3, 20, and 225	55±27 nm	3 months	Cherry tomato	ZnO NPs changed the content of micronutrients and	36
	mg Zn/kg			(Solanum	macronutrients in plant roots, and the effect was related to	
				lycopersicum L var.	soil type.	
				cerasiforme)		
CuO NPs	100, and 300	_	7 days	Wheat (Triticum	In alkaline calcareous soil (pH 8.3), CuO NPs did not alter	37
	mg Cu/kg			aestivum)	the length of wheat root, but 300 mg/kg CuO NPs	
					significantly reduced it in acidic soil.	
ZnO NPs	1, 3, and 5 mg	18 nm	After	Sorghum (Sorghum	Under drought stress, ZnO NPs increased the dry weight of	38
	Zn/kg		sorghum full	bicolor var. 251)	plant root, and promoted the uptake of N, P, and K by	
			maturity		sorghum roots.	
ZnO NPs	20, 225, 450,	68±12 nm	35 days	Wheat, maize, radish,	Both in acidic soil and calcareous soil, the plant root Zn	9
	and 900 mg			bean, lettuce, tomato,	content increased with the increase of Zn dose in the soil,	
	Zn/kg			pea, cucumber, and	and the root Zn content varied significantly between	
				beet.	different plant species.	
ZnO NPs	25, 50, 75, and	20–30 nm	125 days	Wheat	ZnO NPs increased the dry weight of wheat root.	16

	100 mg/kg					
ZnO NPs	25, 50, and 100	20–30 nm	125 days	Wheat	ZnO NPs promoted the growth of root, and decreased the Cd	17
	mg/kg				concentration in a dose-dependent manner whether in the	
					absence of drought or drought conditions.	
CuO NPs, and	300 mg Cu/kg,	50 nm	13 days	Wheat	CuO NPs caused the growth of root hairs near the root tip,	39
ZnO NPs	500 mg Zn/kg	(CuO			while ZnO NPs promoted lateral root development.	
		NPs), 70				
		nm (ZnO				
		NPs)				
Uncoated (Z-	62.5, 125, 250,	_	45 days	Common bean	Z-COTE-HP1® increased the root length at all	40
COTE®) and	and 500 mg/kg			(Phaseolus vulgaris	concentrations. At the treatment of 125 mg/kg Z-COTE-	
coated (Z-				L. var. red hawk	HP1®, the content of Zn, S and Mg in roots increased by	
COTE-				kidney)	140%, 65%, and 44%, respectively.	
HP1®) ZnO						
nanomaterials						
(NMs)						
ZnO NPs	10, 100, and	100 nm	30 days	Cucumber	Root showed an inverse U-shape response to ZnO NPs dose,	18

(coated and	1000 mg/kg	(coated			namely, low concentration promotion and high
non-coated)		ZnO NPs),			concentration inhibition. In addition, under 1000 mg/kg ZnO
		75 nm			NPs treatment, the root tip deformation was observed, which
		(non-			depended on the soil organic matter.
		coated			
		ZnO NPs)			
ZnO NPs	0, 50, 250, and	30 nm	9 weeks	Sweet sorghum	The coexistence of high-dose ZnO NPs and Cd had ¹⁹
	500 mg/kg				synergistic toxicity and inhibited plant growth.
ZnO NPs	0, and 500	30 nm	9 weeks	Maize	500 mg/kg ZnO NPs increased the absorption of Mg and Cu 10
	mg/kg				by AMF inoculated plants, and decreased the P absorption
					of AMF uninoculated plants.
ZnO NPs	0, 50, and 500	30±10 nm	1 month	Maize	ZnO NPs did not change root dry biomass, significantly. ¹¹
	ZnO mg/kg				But, microplastics increased Zn content in roots under the
					treatment of ZnO NPs.

Note: POD, peroxidase; MDA, malondialdehyde; APX, ascorbate peroxidase; SOD, superoxide dismutase; CAT, catalase.

References:

- 1. J. Cao, Y. Feng, S. He, X. Lin, Silver nanoparticles deteriorate the mutual interaction between maize (*Zea mays* L.) and arbuscular mycorrhizal fungi: a soil microcosm study, *Appl. Soil Ecol.*, 2017, **119**, 307-316.
- 2. P. Das, S. Barua, S. Sarkar, S. K. Chatterjee, S. Mukherjee, L. Goswami, S. Das, S. Bhattacharya, N. Karak, S. S. Bhattacharya, Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system, *Geoderma*, 2018, **314**, 73-84.
- 3. J. Wu, Y. Zhai, G. Liu, T. Bosker, M. G. Vijver, W. J. G. M. Peijnenburg, Dissolution Dynamics and Accumulation of Ag Nanoparticles in a Microcosm Consisting of a Soil–Lettuce–Rhizosphere Bacterial Community, *ACS Sustain. Chem. Eng.*, 2021, **9**, 16172-16181.
- 4. H. Zhang, M. Huang, W. Zhang, J. L. Gardea-Torresdey, J. C. White, R. Ji, L. Zhao, Silver Nanoparticles Alter Soil Microbial Community Compositions and Metabolite Profiles in Unplanted and Cucumber-Planted Soils, *Environ. Sci. Technol.*, 2020, **54**, 3334-3342.
- 5. P. Das, S. Barua, S. Sarkar, N. Karak, P. Bhattacharyya, N. Raza, K. H. Kim, S. S. Bhattacharya, Plant extract-mediated green silver nanoparticles: Efficacy as soil conditioner and plant growth promoter, *J. Hazard. Mater.*, 2018, **346**, 62-72.
- C. Pan, Y. Bao, A. Guo, J. Ma, Environmentally Relevant-Level CeO₂ NP with Ferrous Amendment Alters Soil Bacterial Community Compositions and Metabolite Profiles in Rice-Planted Soils, *J. Agric. Food Chem.*, 2020, 68, 8172-8184.
- 7. Y. Shi, Y. Xiao, Z. Li, X. Zhang, T. Liu, Y. Li, Y. Pan, W. Yan, Microorganism structure variation in urban soil microenvironment upon ZnO nanoparticles contamination, *Chemosphere*, 2021, **273**, 128565.
- 8. C. O. Dimkpa, J. Andrews, J. Fugice, U. Singh, P. S. Bindraban, W. H. Elmer, J. L. Gardea-Torresdey, J. C. White, Facile Coating of Urea With Low-Dose ZnO Nanoparticles Promotes Wheat Performance and Enhances Zn Uptake Under Drought Stress, *Front. Plant Sci.*, 2020, **11**, 168.
- 9. C. Garcia-Gomez, A. Obrador, D. Gonzalez, M. Babin, M. D. Fernandez, Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil, *Sci. Total Environ.*, 2018, **644**, 770-780.

- F. Wang, X. Jing, C. A. Adams, Z. Shi, Y. Sun, Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus, *Environ. Sci. Pollut. Res. Int.*, 2018, 25, 23736-23747.
- 11. W. Yang, P. Cheng, C. A. Adams, S. Zhang, Y. Sun, H. Yu, F. Wang, Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles, *Soil Biol. Biochem.*, 2021, **155**, 108179.
- A. Macůrková, L. Maryška, B. Jindřichová, T. Drobníková, B. Vrchotová, R. Pospíchalová, K. Záruba, T. Hubáček, J. Siegel, L. Burketová, P. Lovecká, O. Valentová, Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and "soil-plant" systems, *Appl. Soil Ecol.*, 2021, 168, 104165.
- I. Jośko, M. Kusiak, P. Oleszczuk, M. Świeca, M. Kończak, M. Sikora, Transcriptional and biochemical response of barley to co-exposure of metal-based nanoparticles, *Sci. Total Environ.*, 2021, **782**, 146883.
- 14. C. Garcia-Gomez, S. Garcia, A. F. Obrador, D. Gonzalez, M. Babin, M. D. Fernandez, Effects of aged ZnO NPs and soil type on Zn availability, accumulation and toxicity to pea and beet in a greenhouse experiment, *Ecotoxicol. Environ. Saf.*, 2018, **160**, 222-230.
- 15. C. Garcia-Gomez, A. Obrador, D. Gonzalez, M. Babin, M. D. Fernandez, Comparative effect of ZnO NPs, ZnO bulk and ZnSO₄ in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions, *Sci. Total Environ.*, 2017, **589**, 11-24.
- 16. A. Hussain, S. Ali, M. Rizwan, M. Zia Ur Rehman, M. R. Javed, M. Imran, S. A. S. Chatha, R. Nazir, Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants, *Environ. Pollut.*, 2018, **242**, 1518-1526.
- 17. Z. S. Khan, M. Rizwan, M. Hafeez, S. Ali, M. R. Javed, M. Adrees, The accumulation of cadmium in wheat (*Triticum aestivum*) as influenced by zinc oxide nanoparticles and soil moisture conditions, *Environ. Sci. Pollut. Res. Int.*, 2019, **26**, 19859-19870.
- 18. S. Moghaddasi, A. Fotovat, A. H. Khoshgoftarmanesh, F. Karimzadeh, H. R. Khazaei, R. Khorassani, Bioavailability of coated and uncoated ZnO

nanoparticles to cucumber in soil with or without organic matter, Ecotoxicol. Environ. Saf., 2017, 144, 543-551.

- 19. F. Wang, C. A. Adams, Z. Shi, Y. Sun, Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus, *Chemosphere*, 2018, **209**, 421-429.
- 20. J. Moll, F. Klingenfuss, F. Widmer, A. Gogos, T. D. Bucheli, M. Hartmann, M. G. A. van der Heijden, Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass, *Soil Biol. Biochem.*, 2017, **111**, 85-93.
- L. Feng, N. Xu, Q. Qu, Z. Zhang, M. Ke, T. Lu, H. Qian, Synergetic toxicity of silver nanoparticle and glyphosate on wheat (*Triticum aestivum* L.), *Sci. Total Environ.*, 2021, **797**, 149200.
- 22. G. Liu, M. Zhang, Y. Jin, X. Fan, J. Xu, Y. Zhu, Z. Fu, X. Pan, H. Qian, The Effects of Low Concentrations of Silver Nanoparticles on Wheat Growth, Seed Quality, and Soil Microbial Communities, *Water Air Soil Pollut.*, 2017, **228**.
- 23. X. Yan, Z. Pan, S. Chen, N. Shi, T. Bai, L. Dong, D. Zhou, J. C. White, L. Zhao, Rice exposure to silver nanoparticles in a life cycle study: effect of dose responses on grain metabolomic profile, yield, and soil bacteria, *Environ. Sci. Nano*, 2022, **9**, 2195-2206.
- J. Xu, X. Luo, Y. Wang, Y. Feng, Evaluation of zinc oxide nanoparticles on lettuce (*Lactuca sativa* L.) growth and soil bacterial community, *Environ. Sci. Pollut. Res. Int.*, 2018, 25, 6026-6035.
- C. Cao, J. Huang, W.-S. Cai, C.-N. Yan, J.-L. Liu, Y.-D. Jiang, Effects of Silver Nanoparticles on Soil Enzyme Activity of Different Wetland Plant Soil Systems, *Soil Sediment Contam: An International Journal*, 2017, 26, 558-567.
- 26. B. Ahmed, M. S. Khan, J. Musarrat, Toxicity assessment of metal oxide nano-pollutants on tomato (*Solanum lycopersicon*): A study on growth dynamics and plant cell death, *Environ. Pollut.*, 2018, **240**, 802-816.
- 27. M. Guilger-Casagrande, N. Bilesky-Jose, B. T. Sousa, H. C. Oliveira, L. F. Fraceto, R. Lima, Effects of biogenic silver and iron nanoparticles on soybean

seedlings (Glycine max), BMC Plant Biol., 2022, 22, 255.

- 28. A. H. Jesmer, J. R. Velicogna, D. M. Schwertfeger, R. P. Scroggins, J. I. Princz, The toxicity of silver to soil organisms exposed to silver nanoparticles and silver nitrate in biosolids-amended field soil, *Environ. Toxicol. Chem.*, 2017, **36**, 2756-2765.
- S. Kolesnikov, A. Timoshenko, T. Minnikova, N. Tsepina, K. Kazeev, Y. Akimenko, A. Zhadobin, V. Shuvaeva, V. D. Rajput, S. Mandzhieva, S. Sushkova, T. Minkina, T. Dudnikova, M. Mazarji, S. Alamri, M. H. Siddiqui, R. K. Singh, Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth, *Plants (Basel)*, 2021, **10**, 2080.
- C. Gkanatsiou, N. Ntalli, U. Menkissoglu-Spiroudi, C. Dendrinou-Samara, Essential Metal-Based Nanoparticles (Copper/Iron NPs) as Potent Nematicidal Agents against Meloidogyne spp., J. Nano Res, 2019, 01, 44-58.
- M. Li, H.-l. Liu, F. Dang, H. Hintelmann, B. Yin, D. Zhou, Alteration of Crop Yield and Quality of Three Vegetables upon Exposure to Silver Nanoparticles in Sludge-Amended Soil, ACS Sustain. Chem. Eng., 2020, 8, 2472-2480.
- 32. J. Yang, F. Jiang, C. Ma, Y. Rui, M. Rui, M. Adeel, W. Cao, B. Xing, Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study, *J. Agric. Food Chem.*, 2018, **66**, 2589-2597.
- B. Ahmed, A. Rizvi, A. Syed, A. M. Elgorban, M. S. Khan, H. A. Al-Shwaiman, J. Musarrat, J. Lee, Differential responses of maize (*Zea mays*) at the physiological, biomolecular, and nutrient levels when cultivated in the presence of nano or bulk ZnO or CuO or Zn²⁺ or Cu²⁺ ions, *J. Hazard. Mater.*, 2021, 419, 126493.
- 34. B. Ahmed, A. Rizvi, A. Syed, A. Jailani, A. M. Elgorban, M. S. Khan, H. A. Al-Shwaiman, J. Lee, Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil, *Environ. Pollut.*, 2021, **289**, 117854.
- 35. M. A. Akanbi-Gada, C. O. Ogunkunle, V. Vishwakarma, K. Viswanathan, P. O. Fatoba, Phytotoxicity of nano-zinc oxide to tomato plant (Solanum

lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits, Environ. Technol. Innov., 2019, 14, 100325.

- 36. P. Almendros, D. González, M. D. Fernández, C. García-Gomez, A. Obrador, Both Zn biofortification and nutrient distribution pattern in cherry tomato plants are influenced by the application of ZnO nanofertilizer, *Heliyon*, 2022, **8**, e09130.
- 37. A. Anderson, J. McLean, P. McManus, D. Britt, Soil chemistry influences the phytotoxicity of metal oxide nanoparticles, *Int J Nanotechnol*, 2017, 14, 15-21.
- 38. C. O. Dimkpa, U. Singh, P. S. Bindraban, W. H. Elmer, J. L. Gardea-Torresdey, J. C. White, Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification, *Sci. Total Environ.*, 2019, **688**, 926-934.
- 39. K. Y. Yang, S. Doxey, J. E. McLean, D. Britt, A. Watson, D. Al Qassy, A. Jacobsone, A. J. Anderson, Remodeling of root morphology by CuO and ZnO nanoparticles: effects on drought tolerance for plants colonized by a beneficial pseudomonad, *Botany*, 2018, 96, 175-186.
- I. A. Medina-Velo, A. C. Barrios, N. Zuverza-Mena, J. A. Hernandez-Viezcas, C. H. Chang, Z. Ji, J. I. Zink, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (*Phaseolus vulgaris*) plants, *J. Hazard. Mater.*, 2017, **332**, 214-222.