Electronic Supplementary Material (ESI) for

Enhanced adsorption and synergistic photocatalytic degradation of tetracycline by MOF-801/GO composite via solvothermal synthesis

Zhihai Wu^{a,b,#}, Ziying Chen^{b,#}, Jia Chen^{b,*}, Xiaofeng Ning^c, Pinghua Chen^{a,*}, Hualin Jiang^a, Hongdeng Qiu^{b,d,*}

^a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China

^b CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

^c State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

^d College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China

[#] Z. Wu and Z. Chen contributed equally to this work.

* Corresponding E-mail: jiachen@licp.cas.cn (J. Chen); cph1979@126.com (P. Chen); hdqiu@licp.cas.cn (H. Qiu).

EXPERIMENTAL SECTION

Synthesis of GO. GO was prepared according to the modified Hummers method.¹ In short, 5 g NaNO₃ and 5 g 200 mesh natural phosphorus flake graphite powder were successively added into a three-necked flask, then slowly poured into 200 mL of concentrated H_2SO_4 , and after stirring in an ice-water bath for 1 h. A total of 20 g of potassium permanganate was slowly added in batches, and the temperature during this process was kept below 10 °C. Then, it was stirred continuously for 26 h in a 38 °C water bath, 200 mL of deionized water was slowly added, and finally the temperature was raised to 84 °C for 15 min. The reaction was stopped and cooled to room temperature. Slowly add H_2O_2 (30 %) until there is no foam in the solution; Finally, the resulted solution was washed with 1mol/L HCl and ultrapure water until it was close to neutral. After dialysis for 1 week, the solution was removed for use.

RESULTS AND DISCUSSION

Subsequently, we performed Raman spectroscopy analysis on GO, MOF-801 and MOF-801/GO composites, as shown in Fig. S1[†], where the characteristic signal peak of GO near 1600 cm⁻¹ represents the intrinsic Raman signal peak of G-band graphite, located at the peak near 1350 cm⁻¹ in the D band is induced by the disordered structure caused by the breathing vibration of sp3 carbon atoms on the aromatic ring, and the signal peak near 2943 cm⁻¹ is caused by the disordered lattice of the material. The MOF-801/GO composite has narrower peak shapes in the D and G bands than single GO, which indicates that the disorder of the overall composite is slightly reduced after GO is compounded with MOF-801, which is consistent with MOF-801. The results of partial aggregation of 801/GO were consistent.

To confirm the thermal stability of the materials, we performed thermogravimetric analysis of GO, MOF-801, and MOF-801/GO, whose TGA curves are shown in Fig. S2[†] With the increase of temperature, MOF-801 showed three obvious weight loss peaks. The first weight loss stage is mainly around 25~100 °C, we believe that the weight loss peak at this stage is caused by the release of water molecules from the outer cage of MOF-801/GO; the second weight loss stage is around 160~280 °C, we speculate This is due to the evaporation of some water molecules remaining in the internal pores of MOF-801; while the weight loss peak at 280~400 °C is due to the mass loss caused by the decomposition of the MOF material. Therefore, the thermal stability was enhanced when GO was incorporated into MOF-801.

Fig. S1 Raman spectrum of GO, MOF-801 and MOF-801/GO.

Fig. S2 Thermogravimetric spectrum of GO, MOF-801 and MOF-801/GO.

Fig. S3 Fluorescence lifetime diagram of MOF-801 and MOF-801/GO.

Photocatalysts	Catalyst	TC	Removal	Reference
	concentration	concentration	efficiency	
	$(g L^{-1})$	$(mg L^{-1})$	(react time)	
g-C ₃ N ₄ /Fe ₂ N	1	20	95.7 %	2
			(30 min)	
$g-C_3N_4/MnO_2/GO$	0.5	10	91.4 %	3
			(60 min)	
Nb-RGO-0.5	0.4	30	74.69 %	4
			(9 min)	
$MoS_2@Z-5$	0.2	20	87.23 %	5
			(210 min)	
CdS/Bi	0.1	20	90 %	6
			(60 min)	
RGO@BT	0.2	40	94.7 %	7
			(120 min)	
rGO/Ag ₂ CO ₃	0.3	10	91.64 %	8
			(60 min)	
Fe ₃ O ₄ @GO-CoPc	0.4	40	99 %	9
			(120 min)	
BiOI/MIL-121	1	20	68 %	10
			(120 min)	
Cu-TiO ₂ /GO	1	20	98 %	11
			(90 min)	
CdS/rGO/ZFO	0.2	50	80 %	12
			(60 min)	
GO/Bi ₂ WO ₆	0.4	20	84 % (60 min)	13
g-C ₃ N ₄ /GO/BiOBr	0.5	10	96 %	14
			(120 min)	
CdS-TNs/rGO	0.75	30	84 %	15
			(180 min)	
MOF-801/GO	0.6	20	97 %	This work
			(60 min)	

 Table S1 Comparison of TC removal efficiency between this work and various photocatalysts.

REFERENCES

1. W. S. Hummers, R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 1958, 80, 1339-1339.

2. J. Yang, Y. Liang, G. Yang, K. Wang, Z. Zeng, Z. Xiong and Y. Han, Constructing electrostatic self-assembled ultrathin porous red 2D g-C₃N₄/Fe₂N Schottky catalyst for high-efficiency tetracycline removal in photo-Fenton-like processes, *J. Colloid Interf. Sci.* 2022, **607**, 1527-1539.

3. C. Du, Z. Zhang, S. Tan, G. Yu, H. Chen, L. Zhou, L. Yu, Y. Su, Y. Zhang, F. Deng and S. Wang, Construction of Z-scheme $g-C_3N_4/MnO_2/GO$ ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation, *Environ. Res.* 2021, **200**, 111427.

4. S. Heng, Q. Song, S. Liu, H. Guo, J. Pang, X. Qu, Y. Bai, L. Li and D. Dang, Construction of 2D polyoxoniobate/RGO heterojunction photocatalysts for the enhanced photodegradation of tetracycline, *Appl. Surf. Sci.* 2021, **553**, 149505.

5. J. Liu, H. Lin, Y. Dong, Y. He and C. Liu, MoS₂ nanosheets loaded on collapsed structure zeolite as a hydrophilic and efficient photocatalyst for tetracycline degradation and synergistic mechanism, *Chemosphere*, 2022, **287**, 132211.

6. R. K. Chava, N. Son and M. Kang, Bismuth quantum dots anchored one-dimensional CdS as plasmonic photocatalyst for pharmaceutical tetracycline hydrochloride pollutant degradation, *Chemosphere*, 2022, **300**, 134570.

7. D. Zhu, L. Cai, Z. Sun, A. Zhang, P. Heroux, H. Kim, W. Yu and Y. Liu, Efficient degradation of tetracycline by RGO@black titanium dioxide nanofluid via enhanced catalysis and photothermal conversion, *Sci. Total Environ.* 2021, **787**, 147536.

8. A. Reheman, K. Kadeer, K. Okitsu, M. Halidan, Y. Tursun, T. Dilinuer and A. Abulikemu, Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag₂CO₃ nanocomposites with enhanced photocatalytic oxidation activity for tetracycline, *Ultrason. Sonochem.* 2019, **51**, 166-177.

9. X. Huang, J. Xiao, Q. Yi, D. Li, C. Liu and Y. Liu, Construction of core-shell $Fe_3O_4@GO-CoPc$ photo-Fenton catalyst for superior removal of tetracycline: The role of GO in promotion of H_2O_2 to •OH conversion, *J. Environ. Manage.* 2022, **308**, 114613.

10. D. Dai, J. Qiu, M. Li, J. Xu, L. Zhang and J. Yao, Construction of two-dimensional BiOI on carboxyl-rich MIL-121 for visible-light photocatalytic degradation of tetracycline, *J. Alloy. Compd.*

2021, 872.

11. S. Qian, S. Pu, Y. Zhang, P. Wang, Y. Bai and B. Lai, New insights on the enhanced nonhydroxyl radical contribution under copper promoted TiO₂/GO for the photodegradation of tetracycline hydrochloride, *J. Environ. Sci.* 2021, **100**, 99-109.

12. W. Shi, L. Wang, J. Wang, H. Sun, Y. Shi, F. Guo and C. Lu, Magnetically retrievable CdS/reduced graphene oxide/ZnFe₂O₄ ternary nanocomposite for self-generated H_2O_2 towards photo-Fenton removal of tetracycline under visible light irradiation, *Sep. Purif. Technol.* 2022, **292**, 120987.

13. Z. Guan, X. Li, Y. Wu, Z. Chen, X. Huang, D. Wang, Q. Yang, J. Liu, S. Tian, X. Chen and H. Zhao, AgBr nanoparticles decorated 2D/2D GO/Bi₂WO₆ photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride, *Chem. Eng. J.* 2021, **410**, 128283.

14. L. Jiang, Y. Xie, F. He, Y. Ling, J. Zhao, H. Ye, S. Li, J. Wang and Y. Hou, Facile synthesis of GO as middle carrier modified flower-like BiOBr and C_3N_4 nanosheets for simultaneous treatment of chromium(VI) and tetracycline, *Chinese Chem. Lett.* 2021, **32**, 2187-2191.

15. F. Firouzi, A. Ebrahimian Pirbazari, F. Simultaneous adsorption-photocatalytic degradation of tetracycline by CdS/TiO₂ nanosheets/graphene nanocomposites: Experimental study and modeling, *J. Environ. Chem. Eng.* 2021, **9**, 106795.