Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Facet-specific cation exchange and heterogeneous transformation of

cadmium sulfide nanoparticles induced by Cu(II)

Meiying Huang^{a,b}, Cun Liu^a, Peixin Cui^a, Fei Dang^a, Jing Zhou^a, Mengli Liu^a, Yujun

Wang^{a,b*}

^a Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil

Science Chinese Academy of Sciences, Nanjing 210008, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author, Tel: 0086-25-86881182, E-mail: yjwang@issas.ac.cn

Text S1 Chemicals

Cd(CH₃COO)₂·2H₂O (CAS no.: 5743-04-4), Cd(NO₃)₂·4H₂O (CAS no.: 10022-68-1), Cu(NO₃)₂·3H₂O (CAS no.: 10031-43-3), thiourea (CAS no.: 62-56-6), and acetic acid (AA, CAS no.: 64-19-7) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). CdCl₂·2.5H₂O (CAS no.: 7790-78-5) and malic acid (MA, CAS no.: 97-67-6) were obtained from Shanghai Macklin Biochemical Co., Ltd. Diethylenetriamine (DETA, CAS no.: 111-40-0), 2-(N-Morpholino)ethanesulfonic acid (MES, CAS no.: 4432-31-9) and sulfur (S, CAS no.: 7704-34-9) were obtained from Sigma-Aldrich (Shanghai) Trading Co. Ltd. (China). Ethylenediamine, ethylene diamine tetraacetic acid (EDTA, CAS no.: 60-00-04), citric acid (CA, CAS no.: 77-92-9), oxalic acid (OA, CAS no.: 144-62-7), tartaric acid (TA, CAS no.: 87-69-4), NaOH (CAS no.: 1310-73-2), HNO₃ (CAS no.: 7697-37-2), and NaNO₃ (CAS no.: 7631-99-4) were purchased from Nanjing Chemical Reagent Co., Ltd.

Text S2 Preparation of CdS-NPs

i CdS-sphere, CdS-rod, CdS-sheet

Different cadmium salts and sulfur sources were used to synthesize CdS-NPs with different morphologies, that is, three CdS-NPs (CdS-sphere, CdS-rod, and CdS-sheet) and one nanosized biogenic CdS (Bio-CdS NPs).¹

For the synthesis of CdS-sphere, 3.2 mmol Cd(CH₃COO)₂·2H₂O and 16 mmol thiourea were dissolved in 40 mL deionized water, after being stirred in 25°C for 30

min, the mixture was transferred into a Teflon-lined stainless steel autoclave with a capacity of 100 mL. The mixture was maintained at 140°C for 5 h. After that, the autoclave was cooled to room temperature. The final products were centrifuged and washed with ethanol and deionized water, and then dried at 60 °C in a vacuum oven for 12 h.

Cd(NO₃)₂·4H₂O and ethylenediamine were used to synthesize CdS-rod. 2 mmol Cd(NO₃)₂·4H₂O was added into 60 mL ethylenediamine. After being stirred for 10 min, 16 mmol thiourea was added. The mixture was transferred into a Teflon-lined stainless steel autoclave with a capacity of 100 mL after being stirred for 10 min, the autoclave was heated at 170°C for 12 h. The final products were centrifuged and washed with ethanol and deionized water, and then dried at 60 °C in a vacuum oven for 12 h.

CdCl₂·2.5H₂O and S powder were used to synthesize CdS-sheet. 0.336 g CdCl₂·2.5H₂O and 0.320 g S powder were added to 60 mL DETA. The mixture was vigorously stirred for 30 min to form a homogeneous suspension and then was transferred into a Teflon-lined stainless steel autoclave with a capacity of 100 mL. The autoclave was heated at 80°C for 48 h. After that, the autoclave was cooled to room temperature. The final products were centrifuged and washed with ethanol and deionized water, and then dried at 60 °C in a vacuum oven for 12 h.

ii CdS-rod6, CdS-rod12, CdS-rod24

For the preparation of CdS-rod NPs, 6.224 mmol Cd(NO₃)₂·4H₂O was added to 60 mL ethylenediamine. After being stirred for 10 min, 18.655 mmol thiourea was added. The mixture was transferred into a Teflon-lined stainless steel autoclave with a capacity of 100 mL after being stirred for another 10 min, the autoclave was heated at 180°C for 6, 12, or 24 h, and the corresponding products were named CdS-rod6, CdS-rod12, and CdS-rod24, respectively. After that, the autoclave was cooled to room temperature. The final products were centrifuged and washed with deionized water, and then dried at 60 °C in a vacuum oven for 12 h.²

iii Bio-CdS NPs

Sulfate-reducing bacteria (SRB), which was obtained from paddy soil, was used to synthesize Bio-CdS NPs. The boiled culture medium (40 mL) was placed in a 100 mL serum bottle, the top space of bottle was purified with N₂, and then the serum bottle was sealed and sterilized at 120°C for 20 min.³ Paddy soil (2 g) was added to the above culture medium in a glovebox purged with N₂. The fifth generation of bacterial suspension, which was enriched with SRB, was used to synthesize Bio-CdS NPs. The CdCl₂ solution (100 mM) was taken into the culture medium. After 3 weeks of incubation (30°C), the bacterial suspension was taken out in the glove box, and then centrifuged at 12987 g for 15 min. The precipitate was washed more than 4 times with oxygen-free water and then freeze-dried.¹

Fig. S1 The Cd/Cu exchange sites in CdS slab models with different facets (top view).

Fig. S2 XRD patterns of CdS-NPs, in which the XRD patterns of CdS-sphere, CdS-

rod, CdS-sheet from ref 1.

Fig. S3 N_2 adsorption-desorption isotherms and SSA (S_{BET}) of CdS-rods.

Fig. S4 Dissolution kinetics of Bio-CdS NPs in presence of Cu(II).

Fig. S5 The ratio of dissolved Cd(II) to removed Cu(II) in the CdS-NP suspensions during the reaction process of CdS-NPs with Cu(II).

Fig. S6 XRD patterns (a), Cd 3d (b), S 2p (d) XPS spectra, and X-ray-excited Cu (LMM) AES spectra (c) of the precipitates upon the interaction with CdS-NPs and 10 mM Cu(II) for 24 h.

Fig. S7 SEM (a–c), TEM (d–f), and elemental mapping (g–f) images of the precipitates upon the interaction with CdS-NPs and 10 mM Cu(II) for 24 h. Cd, Cu, and S mass fraction (%) are present in elemental mapping images.

Fig. S8 The chemical speciation distribution of Cu simulated by MINTEQ under different mole ratios of LMWCAs and total Cu (pH = 5.0).

Fig. S9 EPR spectra of solutions upon the interaction with 10 mM Cu(II) and 50 mM reducing substances for 5 min.

Fig. S10 Dissolved Cd(II) concentrations in CdS-NP suspensions upon the interaction with 10 mM Cu(II) and 50 mM $S_2O_3^{2-}$ for 24 h.

Fig. S11 Dissolution kinetics of CdS-sphere (a), CdS-rod (b), and CdS-sheet (c) in presence of Cu(I).

Fig. S12 XRD patterns (a), Cd 3d (b), S 2p (d) XPS spectra, and X-ray-excited Cu (LMM) AES spectra (c) of the precipitates upon the interaction with CdS-NPs and 1 mM Cu(I) for 24 h.

Fig. S13 The relationship between the surface energy (E_{Surface}) and the initial dissolution rate normalized by SSA ($v_{\text{t0-Normalized}}$) of CdS-rods.

Fig. S14 Optimized structures obtained by DFT calculations after the cation exchange of Cd(II) by Cu(II) on the CdS slab models with different exposed facets. Color scheme: Cd: magenta, S: yellow, Cu: blue.

Fig. S15 The effect mechanisms of DOM and reducing substances during the dissolution of CdS-NPs in the presence of Cu(II). (DOM-Cu: the Cu(II) complexed with DOM). Detail information about these reactions was shown as followed text:

(1) $CdS_{(s)} + Cu(II) \rightarrow CuS_{(s)} + Cd(II)$

The dissolution mechanism of CdS-NPs by cation exchange in the presence of dissolved Cu(II) ions.

(2)
$$Cu(II) + DOM \rightarrow DOM-Cu$$

The complexation of Cu(II) with DOM inhibited the cation exchange on CdS-NPs by Cu(II).

(3) Cu(II) + reducing substances $\rightarrow Cu(I)$

 $CdS_{(s)} + 2Cu(I) \rightarrow Cu_2S_{(s)} + Cd(II)$

The reduction of Cu(II) by reducing substances in an anaerobic environment, and the resulting Cu(I) promoted the dissolution of CdS-NPs by the Cd(II)/Cu(I) cation exchange.

	Molecular weight	CAS number	Malagular	pK_a of the carboxyl group	Stability constant
Molecular			structure		for CuL complex
					logK ^a
Acetic acid	60.05	64-19-7	н₃с⊥он	$pK_a = 4.76$	1.83
				$pK_{a1} = 3.13$	
Citric acid	192.12	77-92-9	но он о	$pK_{a2} = 4.76$	5.90
			O, OH	$pK_{a3} = 6.40$	
	124.00			$pK_{a1} = 3.40$	2.42
Malic acid	134.09	97-67-6	HO	$pK_{a2} = 5.20$	3.42
Ovalic acid	90.03	144 62 7	о но. Ц	$pK_{a1} = 1.20$	1.84
Oxalic acid 90.05 14	144-02-7	ОН	$pK_{a2} = 4.28$	-1.0-1	
Tartaric acid 15	150.00	87-69-4	HO O O O O HO O HO O HO O H	p <i>K</i> _{a1} =2.98	3.39
	130.09			$pK_{a2} = 4.34$	
Ethylene			0	$pK_{a1} = 0.00$	
diamine	202.24	60-00-4		$pK_{a2} = 1.50$	10.00
tetraacetic	292.24			$pK_{a3} = 2.00$	18.80
acid				$pK_{a4} = 2.66$	

Table S1. The information about the low-molecular-weight carboxylic acids(LMWCAs) used in this study.

^a. Data from Martell, A.E. and Smith, R.M. 1974 Critical stability constants, Plenum Press, New York.

Soil		OM ^b (g kg ⁻¹) -	Metal concentration ^c				
	рНª		(mg kg ⁻¹)		(g k	(g kg ⁻¹)	
			Cu	Cd	Fe	Mn	
JL	7.9	33.30	21.57	0.23	29.51	0.61	
JS	7.3	34.34	22.43	0.29	30.98	0.28	
HN	6.4	35.71	23.17	0.42	34.62	0.52	
YN	6.9	26.52	29.26	0.39	31.37	0.20	
ZJ	6.2	26.83	37.10	0.26	34.01	0.35	

Table S2. Characterization of soils used to extract soil pore water

^a Soil pH was determined in carbon dioxide-free Milli-Q water at a soil to solution ratio of 1:2.5 (m/v).

^b Organic matter concentration was determined using the Walkley-Black (WB) titration method before K₂CrO₄-H₂SO₄ oxidation.

^c Metal concentrations were determined by ICP-MS or ICP-OES after microwave

digestion of the samples.

CdS-NPs	Dimension (nm)	Exposed facet (%)	$SSA_{\{Exposed facet\}} (m^2 g^{-1})$
CdS-sphere*	Diamatan - 260	{101} (63%)	4.62
	Diameter – 200	{100} (36%)	2.64
CdS-rod*	L_{out} at $h = 1.47$	{100} (87%)	31.96
	Length = 147 Diameter = 23	{101} (8%)	2.94
		{001} (5%)	1.94
CdS-sheet*	Lateral size = 280	{001} (95%)	60.07
		{100} (5%)	3.16
CdS-rod6	Length = 125 Diameter = 20	{100} (81%)	34.18
		{101} (5%)	2.11
		{001} (14%)	5.91
CdS-rod12	$L_{\rm exacth} = 295$	{100} (89%)	27.60
	Diameter = 27	{101} (3%)	0.93
		{001} (8%)	2.48
CdS-rod24	$L_{\rm exactle} = 691$	{100} (95%)	23.07
	Length = 681 $Diameter = 40$	{101} (1%)	0.24
		{001} (4%)	0.73

Table S3. The average dimensions and exposed facets of CdS-NPs

* The average dimension, exposed facets, and SSA of CdS-sphere, CdS-rod, and CdSsheet were quoted from ref 1.

		· _	
	Cu(II) (mM)	ν _{t0} (mmol L ⁻¹ h ⁻¹)	v _{t0-Normalized} (mmol L ⁻¹ h ⁻¹ m ⁻²)
CdS-sphere	0.1	0.038 ± 0.002	2.578 ± 0.140
	0.5	0.042 ± 0.003	2.829 ± 0.179
	1.0	0.056 ± 0.007	3.818 ± 0.459
	0.1	0.077 ± 0.006	5.236 ± 0.424
CdS-rod	0.5	0.187 ± 0.007	12.744 ± 0.504
	1.0	0.214 ± 0.020	14.547 ± 1.365
	0.1	0.087 ± 0.005	5.945 ± 0.338
CdS-sheet	0.5	0.173 ± 0.016	11.791 ± 1.075
	1.0	0.202 ± 0.007	13.789 ± 0.458
	0.1	0.079 ± 0.001	5.405 ± 0.060
CdS-rod6	0.5	0.141 ± 0.006	9.582 ± 0.427
	1.0	0.299 ± 0.032	20.342 ± 2.176
	0.1	0.077 ± 0.006	5.227 ± 0.420
CdS-rod12	0.5	0.128 ± 0.008	8.691 ± 0.559
	1.0	0.203 ± 0.005	13.795 ± 0.319
	0.1	0.043 ± 0.002	2.914 ± 0.122
CdS-rod24	0.5	0.077 ± 0.002	5.261 ± 0.158
	1.0	0.120 ± 0.008	8.181 ± 0.563

Table S4. The initial dissolution rate (v_{t0}) and initial dissolution rate normalized by the specific surface area ($v_{t0-Normalized}$) of CdS-NPs in the presence of Cu(II)

Soil pore water ^{a, b}	рН	TOC (mg C L ⁻¹)	Free Cu concentration (mM)
DOM _{JL}	8.3	43.74	/
DOM _{JS}	7.6	41.83	/
$\mathrm{DOM}_{\mathrm{HN}}$	6.9	48.45	/
$\mathrm{DOM}_{\mathrm{YN}}$	6.7	63.85	/
DOM _{ZJ}	8.0	61.90	/
Cu(II)-DOM _{JL}	8.3	43.74	0.32×10^{-3}
Cu(II)-DOM _{JS}	7.6	41.83	3.04×10^{-3}
Cu(II)-DOM _{HN}	6.9	48.45	124.70×10^{-3}
Cu(II)-DOM _{YN}	6.7	63.85	28.86×10^{-3}
Cu(II)-DOM _{ZJ}	8.0	61.90	9.36×10^{-3}

 Table S5. Characterization of soil pore water

^a Soil pore water were extracted at a soil to solution ratio of 1:2 (m/v). The soil suspension was centrifuged (10000 rpm) after shaking (200 rpm) for 12 h, and then the supernatant were filtered by 0.45 μ m filter membranes.

^b Cu(II) spiked soil pore water were obtained by adding Cu(NO₃)₂ stock solution to the soil pore water, and total Cu concentration in Cu(II) spiked soil pore water was 0.2 mM.

References

- M. Huang, C. Liu, P. Cui, T. Wu, X. Feng, H. Huang, J. Zhou and Y. Wang, Facet-dependent photoinduced transformation of cadmium sulfide (CdS) Nanoparticles, *Environ. Sci. Technol.*, 2021, 55, 13132-13141.
- F. Vaquero, J. L. G. Fierro and R. M. N. Yerga, From Nanorods to Nanowires of CdS Synthesized by a Solvothermal Method: Influence of the Morphology on the Photoactivity for Hydrogen Evolution from Water, *Molecules*, 2016, 21.
- C. Chen, L. Y. Li, K. Huang, J. Zhang, W. Y. Xie, Y. H. Lu, X. Z. Dong and F. J. Zhao, Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils, *Isme J.*, 2019, 13, 2523-2535.