SUPPORTING INFORMATION

Topologically Zn²⁺ hybridized ZnS nanospheres (Zn²⁺/ nZnS) efficiently restrained the infection of *Fusarium verticillioides* in rice seeds by hyphal disorganization and nutritional modulation

Varinder Khepar^a, Anjali Sidhu^b and Anju Bala Sharma ^c ^aDepartment of Chemistry, Punjab Agricultural University, Ludhiana, Punjab, India ^bDepartment of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, India ^cDepartment of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India Corresponding author: Email: <u>anjalisidhu@pau.edu</u>

Zn added	Zn found (µg/ml) (mean+ s d)	Relative Recovery (%)	Relative Standard Deviation (%)
0.50	0.48 ± 0.01	96.00	2.08
1.00	0.97 ± 0.04	97.00	4.12
2.00	1.94 ± 0.11	97.00	5.67
5.00	4.83 ± 0.27	96.60	5.59
10.00	9.41±0.66	94.10	7.01

Supporting table S1. Accuracy and precision of the ICP-OES method

Supporting figures:

Figure S1. Linearity relationship between concentration of Zn and intensity of light emitted at wavelengths of 213.857 nm by using ICP-OES method

Figure S2. Comparative average zeta potential value of uncoated (ZnS©-1), Zn²⁺/nZnS (ZnS©-2 to ZnS©-6) and S²⁻/nZnS (ZnS©-7 to ZnS©-10)

Figure S3. X-ray diffraction pattern of (a) uncoated (ZnS©-1), (b) Zn²⁺/nZnS (ZnS©-2 to ZnS©-6) and (c) S²⁻/nZnS (ZnS©-7 to ZnS©-10)

Figure S4. FT-IR spectrum of (a) uncoated ZnS NPs (ZnS©-1) (b) Zn²⁺/nZnS (ZnS©-6) (c) S²⁻/nZnS (ZnS©-10)

Figure S5. UV-visible spectrum of differentially surface charged ZnS NPs (ZnS©-1 to ZnS©-10)

Figure S6. Antifungal evaluation of (a) ZnS O -1 at 40µg/ml, (b) ZnS O -2 at 40µg/ml, (c) ZnS O -3 at 40µg/ml, (d) ZnS O -4 at 40µg/ml, (e) ZnS O -5 at 40µg/ml, (f) ZnS O -6 at 40µg/ml, (g) ZnS O -7 at 40µg/ml, (h) ZnS O -8 at 40µg/ml, (i) ZnS O -9 at 40µg/ml, (j) ZnS O -10 at 40µg/ml, (k) carbendazim at 250 µg/ml and (l) untreated (control) against mycelium growth of *F. verticillioides*.

Figure S7. ED₅₀ (µg/ml) values of surface charged ZnS NPs and carbendazim (standard) against *F.verticillioides*

Figure S8. ED₉₀ (μg/ml) values of surface charged ZnS NPs and carbendazim (standard) against *F.verticillioides*

Figure S9. EDS spectum represents the qualitative elemental analysis of the ZnS©-6 NPs on hyphal surface. (a) Control (untreated) and (b) ZnS©-6 treated *F. verticillioides*

Figure S10. (a) Crystal violet uptake of ZnS©-6 treated ruptured *F.verticillioides* hyphae, (b) Intracellular soluble protein leakage from ZnS©-6 treated damaged *F.verticillioides* hyphae

Figure S11. Relative seed health and quality parametes of rice seeds nanoprimed with (a) ZnS©-1 at 48µg/ml (b) ZnS©-6 at 48µg/ml, (c) zinc acetate at 48µg/ml, (d) hydroprimed(Control) and (e) carbendazim at 2000µg/ml

Figure S12. Analysis of nutritional Zn (μ g/ml) content in rice seedlings by ICP-OES