Supplementary Information

Plasma-Etched CeO₂ Nanorods with Rich Defect Sites and Acidity for Dichloroethane Oxidation

Can Huo^a, Fan Xue^a, Jinlin Jiang^a, Ming Xia^a, Qing Liu^a, Mifen Cui^{*, a}, Yuan Pan^b, Zhaoyang Fei^{*, a} and Xu Qiao^a

^a State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China

^b State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, PR China

*E-mail: zhaoyangfei@njtech.edu.cn (Z. Fei)

*E-mail: mfcui@njtech.edu.cn (M. Cui)

Figures

Fig. S1 The model surfaces of CeO_2 (001). Yellow and red spheres represent cerium and oxygen ions, respectively.

Fig. S2 SEM images of (a) T-CeO₂, (b) 20P-CeO₂, (c) 40P-CeO₂, and (d) 60P-CeO₂.

Fig.S3 N₂ adsorption-desorption isotherms of the T-CeO₂ and *n*P-CeO₂ catalysts.

Fig.S4 Arrhenius plots of ln (r) versus 1000/T for the T-CeO₂ and *n*P-CeO₂ catalysts in the catalytic of DCE with GHSV at 20000 h^{-1} .

Fig. S5 XRD patterns recorded for the 40P-CeO₂ samples before and after reaction.

Table

Sample	T ₅₀ (°C)	T ₉₀ (°C)	GHSV (h ⁻¹)	References
40P-CeO ₂	215	290	20000	This work
T-CeO ₂	299	374	20000	This work
Al ₂ O ₃ -CeO ₂	315	385	15000	1
AlCe50/50-NC	315	385	15000	1
3DOM LSFCO	416	496	48000	2
10Co ₃ O ₄ /3DOM	390	478	48000	2
Co ₃ O ₄	380	465	15000	3
RuO _x /Co ₃ O ₄ -HP	266	304	60000	4
RuO _x /Co ₃ O ₄ -DP	274	313	60000	4
RuO _x /Co ₃ O ₄	280	315	60000	4
Ru/WO ₃	285	320	40000	5
ZnCo ₂ O ₄	276	375	48000	6
Nb ₂ O ₅ -TiO ₂	246	295	15000	7
CeO ₂ –PrO ₂	318	375	30000	8

Table S1 Comparisons of T_{50} and T_{90}

References

- S.X. Bai, B.B. Shi, W. Deng, Q.G. Dai, X.Y. Wang, Catalytic oxidation of 1,2dichloroethane over Al₂O₃-CeO₂ catalysts: combined effects of acid and redox properties, *RSC. Adv.*, 2015, 5, 48916.
- M.J. Tian, C. He, Y.K. Yu, H. Pan, L. Smith, Z.Y. Jiang, N.B. Gao, Y.F. Jian, Z.P. Hao, Q. Zhu, Catalytic oxidation of 1,2-dichloroethane over three-dimensional ordered meso-macroporous Co₃O₄/La_{0.7}Sr_{0.3}Fe_{0.5}Co_{0.5}O₃: Destruction route and mechanism, Appl. Catal. A: Gen., 2018, 553, 1-14.

- 3 B. de Rivas, R. Lopez-Fonseca, C. Jimenez-Gonzalez, I. Jose, G. Ortize, Synthesis, characterisation and catalytic performance of nanocrystalline Co₃O₄ for gas-phase chlorinated VOC abatement, *J. Catal.*, 2011, **281**, 88-97.
- W. Deng, Z.Y. Jia, B. Gao, S.M. Zhu, D.Q. Liu, L.M. Guo, Effect of preparation method on the performance of porous RuO_x/Co₃O₄ catalysts for 1,2-dichloroethane oxidation, *Appl. Catal. A: Gen.*, 2021, 624, 118300.
- 5 X.H. Yu, L.Y. Dai, J.G. Deng, Y.X. Liu, L. Jing, X. Zhang, R.Y. Gao, Z.Q. Hou, L. Wei, H.X. Dai, An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2dichloroethane over the Ru/WO₃ or Ru/TiO₂ catalyst, *Appl. Catal. B: Environ.*, 2022, **305**, 121037.
- 6 Z.H. Chen, Z.P. Ye, H. Pan, X. Ling, J. Chen, X.M. Zhang, Bifunctional ZnCo₂O₄ catalyst for NOx reduction and 1,2-dichloroethane, *Catal. Commun.*, 2022, **166**, 106452.
- P. Yang, J. Li, L.F. Bao, X. Zhou, X.W. Zhang, S.K. Fan, Z.Y. Chen, S.F. Zuo, C.Z. Qi, Adsorption/catalytic combustion of toxic 1,2-dichloroethane on multifunctional, *Chem. Eng. J.*, 2019, 361, 1400-1410.
- B. de Rivas, N. Guillén-Hurtado, R. López-Fonseca, F. Coloma-Pascual, A. García-García, J.I. Gutiérrez-Ortiz, A. Bueno-López, Activity, selectivity and stability of praseodymium-doped CeO₂ for chlorinated VOCs catalytic combustion, *Appl. Catal. B-Environ.*, 2012, 121-122, 162–170.