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Table S1: Green synthesis of CDs from various plant precursors.

Optical
Precursor Synthe | Reaction | Solve | Features of Qua | Applicati | Ref.
property
plant tic conditio | nt/ synthesized CDs . . | ntu |ons
(emissiv
method | ns chemi m
e color)
cals yiel
used Aex/Aem |d
(hm)
Moringa Hydrot | 200 °C, | Water | N-CDs, 2.6 nm, | Blue 43.4 | Sensing, [01]
oleifera hermal | 10 h monodisperse, % antifungal,
350/445
amorphous and plant
growth
enhancers
Blue
Date kernel Hydrot | 200 °C, 8 | Water | 2.5 nm, uniformly 12.5 | Sensing [02]
hermal | h dispersed, 340/430 | 0% |and
amorphous cellular
imaging
Lemon peel Hydrot | 200 °C, | Water | N-CDs, 1-3 nm, | - 14.0 | Sensing [03]
hermal | 12 h Monodisperse, 0% | and
amorphous photocatal
ysis
Lemon juice | Hydrot | 200 °C, 6 | Forma | N-CDs 5.7 nm, | Blue 31.0 | Bioimagin | [04]
hermal | h mide | monodisperse, 480/704 | 0% |g

amorphous




Cabbage Hydrot | 140°C, 5 | Water | 2-6 nm, | Blue 16.5 | Bioimagin | [05]
hermal | h monodisperse, % g
amorphous 600/485
Blue
Wheat straw | Hydrot | 180 °C, | Water | 2.1 nm, uniformly 7.50 | Sensing [06]
hermal | 12 h dispersed, 380/470 | % and
amorphous cellular
imaging
Blue
Sugarcane Hydrot | 200 °C, 6 | Water | 1.7 nm, uniformly 17.9 | Antimicro | [07]
bagasse hermal | h dispersed, 8% | bials
amorphous,
Blue
Seaweed Hydrot | 200 °C, 4 | Water | 2.2 nm, Antifungal | [08]
hermal | h monodisperse, 360/455 |15 |,
crystalline % anticancer
and
antifungal
activity
Blue
Calotropis Hydrot | 200 °C, 4 | Water | 4.3 nm, uniformly 71.9 | Sensing [09]
procera hermal | h dispersed, 340/416 | 5%
leaves crystalline
Blue
Aloe Microw | 80 W, 1- | Water | 3.2 nm, 31.0 | Photocatal | [10]
barbadensis | ave 8 min monodisperse, 360/434 | 0% |ysis and
M. amorphous Biomedica
I
applicatio

ns




Sesame seeds | Microw | 800 W, | Water | N-CDs 5 nm, well | Blue 8.02 | Sensing [11]
ave 10-15 dispersed, %
- 365/440
min amorphous
Ginkgo fruits | Microw | 800 W, | Water | 2.82 nm, less |- 0.65 | Bioimagin | [12]
ave 15 min uniformly % g
dispersed
3.81 nm, more
Hydrot | 200 °C, ) 3.33
uniformly
hermal | 12 h ) %
dispersed
Peanut shell | Pyrolys | 400 °C, 4 - 133 nm, well|Blue- 10.5 | Sensing [13]
is h dispersed, green 8%
amorphous
312/413
Blue
Carica Pyrolys | 200 °C, - | 7.0 nm, amorphous 23.7 | Sensing [14]
papaya waste | is 15 min 340/462 | 0%
Cotton Pyrolys | 300 °C, 2 - 149 nm, well|Blue 14.8 | Bioimagin | [15]
is h dispersed, % g and
330/460 .
followe | followed amorphous sensing
d by |by700W
microw | for 12
ave min
treatme

nt




Blue

Wheat straw | Hydrot | 250 °C, | Water | 1.7 nm, 9.20 | Bioimagin | [16]
hermal | 10 h monodisperse, 304/418 | % g
amorphous
Green
Ocimum Hydrot | 180 °C, 4 | Water | 3.0 nm, uniform Sensing [17]
sanctum hermal | h dispersion 450/500 9.3 |and
leaves amorphous % bioimagin
g
Groundnut Hydrot | 250 °C, 6 | Water | 2.5 nm, | 370/445 Sensing [18]
hermal | h monodisperse, 17.6 |and
amorphous % bioimagin
g
Blue
Rapeseed Hydrot | 200 °C, | Water | 5.2 nm, crystalline 7.70 | Agricultur | [19]
pollen hermal | 24 h 360/432 | % e (plant
growth

enhancers)




Table S2. A comparative study of the advantages and disadvantages of the different synthesis
routes of the CDs.

Approach

Carbon

precursor

Method

Advantage

Disadvantage

Ref.

Top-down

Carbon shoot,

graphite rod,
graphite powder,
carbon fibers,

carbohydrates

Arc discharge

Simple, by
control of laser
pulse, size can

manipulate

Harsh condition, low
QY, impurities over

synthesis

Chemical ablation

Inexpensive
equipment,

CDs can
synthesize on
large scale,

Most accessible

Several synthetic
steps, requires toxic
chemicals such as
strong acid/base,
special ~ equipment

required,

Laser ablation

Simple, by
changing
experimental
parameters,
CDs
different

with
sizes
and controllable
morphology

can synthesized

Large raw material,
Poor control in size,

QY,

modification is

low

necessary

Electrochemical

exfoliation

High yield, CDs
size can
manipulate over
potential

control,

Complex method

[20-26]

Bottom-up

Organic

molecules
(organic acid,
dopamine, amino

acids, glucose,

Hydrothermal

Non-toxic,

cost-effective,
gasy, precursor
can be from

natural source,

Poor control in size,
Long synthesis

duration, low vyield




glycerol),  fruit

pulp, peel, fruit
juice, plant
extract, leaves,
organic waste

(agricultural
waste such as
wheat straw, rice

straw, rice husk)

high quantum
efficient

Pyrolysis Easy process, | Harsh condition,
wide precursor | Non-uniform  size
scope, fast, | distribution

solvent-free,
low cost and
can synthesized

at large scale

Microwave

Fast synthesis,
eco-friendly,

inexpensive

Poor control in size,
ristrict large scale
synthesis, high

energy cost

[27-34]




Table S3: Comparison of CDs with other carbon nanomaterials applied in agriculture.

Carbon

Nanomaterials

Features

Advantages and
Application in

Agriculture

Disadvantages and

Toxicity

Ref.

Carbon
Nanotubes
(SWCNTs
MWCNTS)

and

Small size,

Tubular shape,

High surface area,
High tensile strength,
Less water soluble,
Less biocompatible,

Eco-toxic

Seed germination due to
small size & tubular shape
smooth penetration of seed
coat-enhanced water

uptake,

Better adsorption of water

and nutrients,

Antimicrobials activity due
to mechanical damage, and
ROS production,

Increase  photosynthetic

rate via electron transfer,

Nutrient and gene delivery
system due to small size,
tunable surface chemistry
and tow toxicity compared
to other  metal-based

nanomaterials,

Agro-nanosensors due to
luminescence qualities, fast
reaction time, and high
stability,

Toxicity at high dose,

Large size often blocks

penetration,

Bioaccumulation in
plants and entry to the
food chain,

Penetration to cells

leads to deposition
followed by blockage of

nutrients,

Mechanical damage to
tissue by  piercing

effects due to high

tensile strength

[35-39]

Graphene and

graphene oxide

Small size,
Thin sheet structure,

Flat shape,

Seed germination and plant
growth due to small size
and thin sheet structure

smooth penetration of seed

Large sheet leads to less
translocation hence
graphene deposition in

cell organelles leads to




High strength,
Large surface area,

High chemical

stability,

High mechanical

stability,

Tunable surface

chemistry,

Low toxicity

coat-enhanced water

uptake;  Apt.  surface
chemistry  for  binding

nutrient and water,

Delivery vehicle for plant

nutrients and genes,

Antimicrobials and

pesticide activity

bioaccumulation and

toxicity,

Retarded

(oxidative  stress at

growth

higher doses) ,

Increased heavy metal
toxicity as  uptake
increased due to
mechanical damage to
cell wall and membrane

by large GO sheets

[40-44]

CDs

Ultra-small size,
Quasi-spherical shape,
Chemical stability,

Tunable and stable

photoluminescence,

Cost-effective
production,

Remarkable

biocompatibility,

Negligible toxicity

Improve seed germination
since small size and
spherical shape-easy seed
coat penetration,

Improve water and nutrient
uptake due to presence of
hydrophilic surface groups,

Photosynthetic enhancers
due to strong fluorescence
(Augment light coverage)
and enhanced
photosynthetic rate via

electron transfer,
Antimicrobial activity,

Agro-nanosensors due to
strong fluorescence and
high stability

Phytotoxicity at high
doses (due to oxidative

stress)

[45-49]




Meta/metal
oxide

nanoparticles

Small size, different
types of shape (star,
spherical, cube, rod,
tripod), Large surface

area,

Increase photosynthesis,
Diminish MDA and H20-
concentration,

Improve the antioxidant
enzyme level,

Improve the antimicrobial
activity  against  plant
pathogen,

Ph of the soil can alter, but

it varies from soil to soil

Decrease the uptake and
translocation
of nutrients,
Reduces  the  root
hydraulic conductivity,
Seedling growth and
seed germination can
reduce,

Decreases the root, and
shoot growth,
Alter the

activities and

enzymatic
bacterial communities’
soils,

The phytotoxicity in
plant increase due the
release of metal ions
MNPs,

Aggregation of MNPs

from

can increase toxicity

[50-53]




Table S4: Antimicrobial activity of CDs against various phytopathogens.

Phytopathogen Plant disease caused Concentrati | Type of | Ref.
on of CDs for | study
growth
inhibition

Fungus Pseudoperonospora | Cucumber downy mildew 40 mg L Invivo | [54]

cubensis

Bacterium Ralstonia | Bacterial wilt syndrome in tomatoes 10mg L? Invivo | [55]

solanacearum

Fungus Rice blight 300 ugmLt | Invitro | [56]

Rhizoctonia solani

Fungus Rice blast 300 ugmL™t | Invitro | [56]

Pyricularia grisea

Fungus Tomato wilt 50 uL In-vitro | [57]

Fusarium oxysporum

Bacterium Pseudomonas | Root diseases of Arabidopsis and sweet | 80 uL Invitro | [57]

aeruginosa basil

Bacterium  Pectobacterium | Soft rot and stem rot diseases in Chinese | 5 mg mL™ Invitro | [58]

carotovorum cabbage, potato, tomato etc.

Bacterium Pseudomonas | Bacterial speck of tomato 5mgmL™? In vitro | [58]

syringae pv. tomato

Bacterium Agrobacterium | Crown gall disease in woody plants such | 1 mg mL™ In vitro | [58]

tumefaciens as apple, cherry, walnuts, grapevines,

rose, etc., and occasionally in cotton,
sugar beets, tomatoes, beans and alfalfa.

Bacterium Agrobacterium | Hairy root disease in dicots such as|1mgmL™ In vitro | [58]

rhizogenes soybean etc.

Fungus Corynespora | Target spots on cotton, soybean, chilli, | 11 uL mL™* Invitro | [59]

cassiicola papaya, sweet poatato etc.

Fungus Phytophtora | Crown rots on ornamentals, tomato, | 11 pL mL™ Invitro | [59]

nicotianae onion, pepper, citrus plants, etc.




Table S5. CD-based detection of various pesticides and herbicides in food samples.

Material | Precursor of | Synthe | Target Sampl | Techniq | Linearity | LOD Ref.
CDs tic rout | analyte es ue
of CDs
CDs Calotropis Hydrot | Isoprothiola | Fruit Fluoresc | 0.1 mM- | 11.58 nM | [60]
procera leaves | hermal | ne (tomat | ence 0.05 uM
0,
grape,
and
apple)
and
rice
CDs Cauliflower Hydrot | Diazinon, Plant, | Fluoresc | - 0.25, 0.5, |[61]
hermal | glyphosate, | and ence and 2.0 ng
and nutritio mL?t for
amicarbazon | nal diazinon,
e product amicarbaz
, Water one, and
glyphosate
N-CDs Cellobiose and | Hydrot | Phosalone, | Jackfru | Fluoresc | 0.08-14.0 | 28.5 ng | [62]
urea hermal it, ence pgmL?t |mL?
pitaya,
and
water
spinach
N-CDs DL-malic acid | Hydrot | Pirimicarb Tea, Fluoresc | 0.5-200 0.3 ugmL"™ | [63]
and glycerol hermal apples | ence pgmL?t |1
and
cucum
bers
S,N-CDs | Citric acid Hydrot | Bendiocarb | Juice Chemilu | 0.1-10 0.02 png|[64]
hermal and minesce | mgmL?t | mL?
water | nce
S,N,B- Ginkgo biloba | Hydrot | Enitrothion, | Rice Fluoresc Fen, Dit | [65]
CDs leaves hermal | dithianon, ence and Din
dinoseb 0.36, 0.28,
and 0.66
nM
N-, S-, Si- | Broccoli leave | Hydrot | O,0- Apple, | Fluoresc | 0.01-1.0 |8.0nM [66]
CDs hermal | dimethyl-O- | celery, | ence uM
2,2- and
dichloroviny | cabbag
| phosphate | e
CeOz- Citric acid Hydrot | Methyl- Semen | Fluoresc | 0.015-1.5 | 24.7 ng | [67]
B,N-CDs hermal | paraoxon Coicis, | ence mM mL
panax
quinqu

efolius




L and

tap and
lake
water,
Cu-CDs 1-(2- Hydrot | Thiophanate | Apple, | Fluoresc | 0.10- 2.90 x | [68]
pyridylazo)-2- | hermal | -methyl tomato | ence 20.00 10°® pmol
naphthol and pumol Lt | L
(PAN) water
Ag-CDs Riboflavin Hydrot | Propanyl, Rice, Fluoresc 250 ng | [69]
hermal | parathion, carrot, | ence mL?
dimethoate, | orange
chlorpyrifos | and
and pepper
pyrimicarb,
Au-CDs | Sucrose/PEG | Microw | Malathion Cabbag | Fluoresc | 1x10°- | 0.13x10° | [70]
ave e ence and | 1x102M [ M
colorime (fluoresce
tric nce) and
0.59x10°°
M
(colorimet
ric)
Ca-PEG- | Polyethylene Pyrolys | Trifluralin Soil Fluoresc 7.89 UM [71]
CDs glycol is ence
CdTe-CDs | Chitosan Hydrot | Glyphosate | Cucum | Fluoresc | 0-1000 2.0 pM [72]
hermal ber, ence nM
Capsic
um,
Ginger
MoS2-CdS | Sodium citrate | Hydrot | Chlorpyrifos | Fruit ECL 10 nM -{0.35fM [73]
nanospher hermal and 1.0fM
es and Ag- vegeta
CDs ble
SMIP@Si- | Citric acid Hydrot | Indoxacarb | Apple, | Fluoresc | 4-102nM | 1 nM [74]
CDs hermal tomato | ence
and
well
water
CoOOH- | Citric acid Hydrot | 2,4- Pear Fluoresc | - 100 ug Lt | [75]
CDs hermal | Dichlorophe | juice, ence
noxyacetic human
Acid urine,
serum
and
lake

water




CDs Folic acid and | Hydrot | Paraoxon Rice, Colorim | 0.001 to | 0.4ngmL | [76]
- hermal cabbag |etricand [ 1.0 pg|1l
phenylenedia e and | fluorome | mL™
mine water | tric
CDs- Orange peels | Hydrot | Acephate Baby Colorim | 0-1800 21.0, [77]
Au@AgN hermal cabbag | etric
Ps e and|and 0-1900 16.0 ug L~
celery | fluorome | ug Lt 1
cabbag | tric
AChE- Citric acid and | Hydrot | Carbaryl Apple | Colorim | 0.025- 2 |0.021 mU | [78]
ATCh- urea hermal juice | etric and | mUmL™? | mL? and
AgNPs- fluorome 0.016 muU
CDs tric mL?
N-, B-| - - 0,0 Cucum | Electroc | 0.003- - [79]
CDs@GO -dimethyl ber, hemical | 0.014 ng
organophosp | cabbag | impedan | mL™
horus e and|ce
pesticides lettuce | spectros
copy
CDs-ZrOz | Glucose Ultraso | Methyl Rice Adsorpti | 0.2-48 ng | 0.056 ng | [80]
nicatio | parathion ve mL? mL?
n stripping
voltamm
etry
N-CDs Citric acid and | Hydrot | Paraquat - DPV 0.1-10 6.4 nmol | [81]
ethylenediami | hermal umol Lt | LT

ne




The physical and chemical properties of CDs are dependent on raw materials, heating
temperature, reaction time, solvent effect and heteroatom doping use in the synthesis. Several
studies found that the fluorescence property, degree of crystallinity, hydrophilicity,
hydrophobicity, and stability of CDs associated with the starting materials. However, the
accurate relationship between starting material and distinct properties of CDs is not very clear
at present [27, 82-85].

The carbon-based nanomaterials show great potential in agriculture and their toxicity
substantially depends on their concentration, growth conditions, and plant species. Moreover,
owing to their small size, shape, surface functionalities, and other physicochemical properties,
their absorption, and translocation in plants and other organisms raises toxicity concerns, which
cannot be overlooked. Although compared to other CNMs, CDs show negligible toxicity and
immense potential in agricultural applications, still there is a lack of adequate knowledge. The
research in this area requires more efforts to establish a better understanding of the toxicity of
CDs [86-88].
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