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Instruments. Scanning electron microscopy (SEM) measurements were performed 

on a ZEISS MERLIN Compact scanning electron microscope (ZEISS, Germany). 

Powder X-ray diffraction (PXRD) patterns were collected from a Bruker D2 Phaser X-

ray diffractometer (Bruker, Germany) with Cu Kα radiation over the 2θ range from 5 

to 60°. Fluorescence spectra were collected on a Hitachi F-7100 spectrofluorometer 

(Hitachi, Japan). The influences from the second-order scattering peaks were 

eliminated by placing a JB400 filter before the detector. Fluorescence lifetimes were 

obtained from a Horiba Jobin Yvon Fluorolog-3 spectrofluorometer (Horiba, USA). 

Transmission electron microscopy (TEM) images were collected by FEI Talos S-FEG 

transmission electron microscopy (FEI, USA) and scanning transmission electron 

microscopy (STEM) images were obtained from a high-angle annular dark field 

(HAADF) detector. UV-vis absorption spectra were carried out at a UV–2450 

spectrophotometer (Shimadzu, Japan). X-ray photoelectron spectroscopy (XPS) tests 

were performed on a Thermo Scientific K-Alpha+ X-ray photoelectron spectrometer 

(Thermo Scientific, USA). Fourier transform infrared (FT-IR) spectra were collected 

by using a Bruker IFS 113v spectrometer (Bruker, Germany). Thermogravimetric 

analysis (TGA) was carried out on a Mettler TGA 2 analyzer (Mettler, Switzerland) 

from 30 °C to 790 °C with a heating rate of 5 °C min−1 under the flow of N2. The single-

crystal X-ray diffraction measurement was performed on a BRUKER D8 VENTURE 

PHOTON II area-detector diffractometer with graphite-monochromated Mo-Kα 

radiation (λ = 0.71073 Å) at 296 K. The N2 adsorption-desorption isotherm was 

recorded with an Autosorb IQ surface area and pore analyzer at 77 K under liquid N2.
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Synthesis of Eu-MOF and Tb-MOF. The Eu-MOF was synthesized according to 

a previous paper with some modifications.1 Detailedly, a portion of 0.0264 g of 

H2BDC-OH (0.145 mmol), 0.0647 mg of Eu(NO3)3·6H2O (0.145 mmol), and 0.1623 g 

of FBA (1.158 mmol) were added to 7.3 mL of DMF and then vigorously stirred for 

dissolution. Subsequently, 0.6 mL of H2O and 0.2 mL of 3.5 M DMF diluted HNO3 

was added to the above solution. After mixing well, the mixture was transferred into a 

Teflon autoclave and heated at 120°C for 48 h. The other processes are the same as the 

synthesis process of Tb/Eu-MOF. The synthesis of Tb-MOF was similar to that of Eu-

MOF except that Tb(NO3)3·5H2O was used instead of Eu(NO3)3·6H2O.

Bacterial spore study. Bacterial spore cultures were implemented by the previously 

reported methods with some modification.2-4 Firstly, the resuscitation solution was 

added to the freeze-dried Bacillus subtilis (CMCC(B)63501) strain to prepare the 

suspension. Subsequently, a certain amount of Bacillus subtilis suspension was 

inoculated on Luria-Bertani medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L 

NaCl), and then incubated at 37 °C for 4 days. After incubation, the samples were 

washed with sterile ultrapure water 5 times to remove the culture medium. After that, 

about 3 mg of samples were dispersed into 1 mL of 10 mM D-alanine solution, and the 

suspension was then heated in a water bath at 70 °C for 90 min to germinate the spores 

and release DPA. After cooling to room temperature, the above-mentioned solution was 

filtered with a 0.22 μM membrane filter to remove bacteria.

Paper-based sensing of DPA. For the paper-based sensing of DPA, the test papers 

were fabricated by immerging nitrocellulose filter paper into the Tb/Eu-MOF solution. 
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Firstly, the nitrocellulose filter paper was cut into the circular tablet by a hole puncher, 

and then the circular filter paper was immersed into the Tb/Eu-MOF probe solution. 

After natural drying of the filter paper loaded with the Tb/Eu-MOF, the test papers were 

used for subsequent paper-based sensing.
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Fig. S1 The pore size distribution of Tb/Eu-MOF calculated from N2 sorption isotherms 

by the Barrett-Joyner-Halenda model.

Table S1. The atomic percent of Tb/Eu-MOF by EDS analysis.

Element Atomic percent (%)

C 75.2

O 17.65

F 5.22

Eu 0.92

Tb 1.01
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Fig. S2 (a) Simulated XRD and (b) PXRD patterns of the Tb/Eu-MOF. PXRD patterns 

of the Tb/Eu-MOF after soaked in water for (c) 1 day and (d) 2 days.

Fig. S3 Fluorescence spectra of solid-state for (a) Tb/Eu-MOF, (b) Tb/Eu-MOF after 

soaked in water for 1 day, and (c) Tb/Eu-MOF after soaked in water for 2 days.
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Fig. S4 The TGA curve of Tb/Eu-MOF.

Fig. S5 Optimization of the excitation wavelength for DPA detection: three-

dimensional fluorescence spectra of Tb/Eu-MOF (2.5 mg/L) in Tris-HCl buffer (pH 

7.5) before (A) and after (B) the addition of 20 μM DPA.
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Fig. S6 Optimization of the pH of sensing system: (A) Fluorescence spectra, (B) 

fluorescence intensity, and (C) fluorescence intensity ratio of Tb/Eu-MOF (2.5 mg/L) 

in the Tris-HCl buffer (50 mM) at different pH values after the addition of 20 μM DPA.

Fig. S7 Optimization of the incubation time for ratiometric fluorescence sensing of 

DPA. Experimental conditions: Tb/Eu-MOF, 2.5 mg/L; DPA, 20 μM; 50 mM Tris-

HCl buffer, pH 7.5; λex = 275 nm.
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Table S2. Comparison of the reported fluorescence methods for DPA detection.

Probe Sensing mode Linear range (μM) LOD (nM) Ref.

Eu-MOF Turn-on 0 – 100 3800 5

a His@ZIF-8/Tb3+ Turn-on 0.08 – 10 20 6

b TbP-CPs Turn-on 0 – 8 5 7

c Sm3+/GSH@AuNCs Turn-off 1 – 120 100 8

d Ln-CPNs Ratiometric FL 2 – 16 96 4

e CDs-Tb Ratiometric FL 0.005 – 1.2 5 9

f Eu@SiNPs Ratiometric FL 0.5 – 20 150 10

g Tb-Micelle Ratiometric FL 0 – 7 54 11

h R6G/CdS@ZIF-8 Ratiometric FL 0.1 – 150 67 12

i Eu-CDs Ratiometric FL 0.005 – 0.7 5 13

j Tb-COP Ratiometric FL 0.1 – 30 13.5 14

 Eu-CDs Ratiometric FL 0.5 – 110 50 15

Tb/Eu-MOF Ratiometric FL 0.05 – 20 1.5
This 

work

a His@ZIF-8/Tb3+: Tb3+-doped histidine functionalized ZIF-8; b TbP-CPs: terbium phosphonate 

coordination polymer microspheres; c Sm3+/GSH@AuNCs: Sm3+ induced glutathione-protected 

gold nanoclusters; d Ln-CPNs: lanthanide coordination polymer nanoparticles; e CDs-Tb: Tb3+ 

functionalized carbon dots; f Eu@SiNPs: Eu3+-doped silicon nanoparticles;  g Tb-Micelle: Tb3+ 

functionalized micelle; h R6G/CdS@ZIF-8: rhodamine 6G and CdS quantum dots-loaded ZIF-8; i 

Eu-CDs: Eu3+-doped carbon dots; j Tb-COP: terbium-covalent organic polymer.
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Fig. S8 (A) Photographs of the nitrocellulose filter paper loaded with Tb/Eu-MOF 

under irradiation at a 275 nm UV lamp. Photographs of the test paper loaded with 

Tb/Eu-MOF upon addition of (B) 8 μL of DPA solution with variable concentrations 

(from 1 to 8: 0, 50 μM, 100 μM, 250 μM, 500 μM, 750 μM, 1 mM, and 5 mM) and (C) 

8 μL of 5 mM different interferences (from 1 to 8: H2O, BA, p-HBA, o-PA, m-PA, 

BTC, Phe, Asp, and DPA) under irradiation at a 275 nm UV lamp.
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Table S3. Detection results of DPA in lake water samples (n = 3).

Sample
Added 

(μM)
Detection signal

Found 

(μM)

Recovery 

(%)
RSD (%)

0 NFa – –

4 4.36 109.0 1.2

8 8.87 110.9 1.4

12

F546/F423

12.58 104.8 0.8

0 NF – –

4 4.87 121.8 0.9

8 8.97 112.1 0.4

12

F617/F423

11.48 95.7 0.3

0 NF – –

4 4.06 101.5 1.0

8 7.90 98.8 1.4

Lake 

water

12

(F546+F617)/F423

11.74 97.8 0.7

a Not found.
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