Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2022

Supporting information

Cu₂O@Co/N-doped carbon as antibacterial catalysts for oxygen reduction in microbial fuel cells

Huina Chen^{†,#}, Demin Jiang^{†,‡,#}, Hao Xie[†], Yuxin Liu[†], Shishi Li[†], Yuqiao Wang^{†,*}

[†]Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical

Engineering, Southeast University, Nanjing 211189, China

[‡]School of Environmental and Chemical Engineering, Chongqing Three Gorges University,

Chongqing 404100, China

*Corresponding author (Email: yqwang@seu.edu.cn).

[#]These authors contributed equally to this work.

Figure S1. Schematic illustration for synthesis of Cu₂O@Co/NC.

Fig S2. (a) Model of Co/NC. (b) Calculated charge of atoms of Co/NC. (c) Charge density

distribution.

Figure S3. (a) SEM image of ZIF-67 and (b) TEM image of Co/NC.

Figure S4. XRD patterns of ZIF-67 precursor.

Figure S5. XPS spectra of Cu₂O@Co/NC in the C 1s (a) and O 1s (b) region.

Figure S6. (a) CV curves in O₂-saturated and N₂-saturated 0.1 M KOH of Cu₂O@Co/NC (b) CV

curves of different ratios.

Figure S7. (a) LSV of Cu₂O@Co/NC with different electrode rotation speeds (b) the corresponding

K-L plots at different potentials.

Figure S8. CV curves of (a) Co/NC and (b) Cu₂O@Co/NC in the non-faradic capacitance current

range from 20 to 100 mV s⁻¹.

Figure S9. Equivalent circuit.

Figure S10. Half-wave potential of various ORR catalysts¹⁻⁶.

Table S1. Impedance fitting results.

	Pt/C (Ohm cm ⁻²)	Cu ₂ O@Co/NC (Ohm cm ⁻²)	Co/NC (Ohm cm ⁻²)
R_1	0.245	0.283	0.193
R_2	2.831	3.605	4.957

Table S2. Summary of ORR activities of various catalysts in 0.1M KOH.

Catalysts	Half-wave potential (V)	Onset potential (V)	Limiting current density (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Ref.
Co-Nx/C-MnO	0.87	0.93	5.76	79.5	1
MnCo ₂ O ₄ /NCNTs	0.76	/	6.06	61.9	2
Fe _x Co _{9-x} -NHCS-V	0.80	/	/	55.75	3
Hollow Fe–N/ C- 800	0.80	0.99	5.19	76.33	4
ZIF-67@CoTMPP (800)	0.78	0.85	/	56	5
Zn/CoN-C	0.86	1.00	6.1	67	6
Cu ₂ O@Co/NC	0.80	0.89	3.80	62.99	this work

Table 55. Comparison of MFCs performance with different calnode calar
--

Anodo	Cathode	External	Output voltage	Power	Defense
Anode		resistance		density	Keterence
carbon cloth	GO-Zn/Co (1:1)-800	1000 Ω	145 mV	773 mW m ⁻²	7
carbon cloth	GCN-Co@CoO	1000 Ω	600 mV	$611 \pm 9 \text{ mW m}^{-2}$	8
carbon paper	Ag/Co-N-C	/	$502\pm12\ mV$	548±12 mW m ⁻²	9
carbon felt	MPC-800	1000 Ω	470 mV	240 mW m ⁻²	10
carbon felt	GO/MgO	1000 Ω	354 mV	755.63 mW m ⁻²	11
carbon felt	Mn–Fe@g-C ₃ N ₄	1000 Ω	450 mV	413±7 mW m ⁻²	12
carbon cloth	Cu ₂ O@Co/NC	1000 Ω	430 mV	1100 mW m ⁻²	this work

References

- 1. C. Chen, Z. J. Tang, J. Y. Li, C. Y. Du, T. Ouyang, K. Xiao and Z. Q. Liu, MnO enabling highly efficient and stable Co-Nx/C for oxygen reduction reaction in both acidic and alkaline media, *Advanced Functional Materials*, 2022, 202210143.
- 2. Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu, S. Zhao and Z. Q. Liu, Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction, *Angewandte Chemie International Edition*, 2022, **61**, e202114696.
- 3 S.-J. Li, Y. Xie, B.-L. Lai, Y. Liang, K. Xiao, T. Ouyang, N. Li and Z.-Q. Liu, Atomic modulation of Fe-Co pentlandite coupled with nitrogen-doped carbon sphere for boosting oxygen catalysis, *Chinese Journal of Catalysis*, 2022, **43**, 1502-1510.
- 4. X. T. Wu, L. J. Peng, K. Xiao, N. Li and Z. Q. Liu, Rational design and synthesis of hollow Fe-N/C electrocatalysts for enhanced oxygen reduction reaction, *Chemical Communications* (*Camb*), 2021, **57**, 5258-5261.
- 5. L. Wang, X. Jin, J. Fu, Q. Jiang, Y. Xie, J. Huang and L. Xu, Mesoporous non-noble metal electrocatalyst derived from ZIF-67 and cobalt porphyrin for the oxygen reduction in alkaline solution, *Journal of Electroanalytical Chemistry*, 2018, **825**, 65-72.
- Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao, R. Yang, Z. Li, J. Luo, B. Chi, Z. Jiang, M. Li, S. Mu, S. Liao, J. Zhang and X. Sun, An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction, *Angewandte Chemie International Edition*, 2019, 58, 2622-2626.
- W. Yang, G. Chata, Y. Zhang, Y. Peng, J. E. Lu, N. Wang, R. Mercado, J. Li and S. Chen, Graphene oxide-supported zinc cobalt oxides as effective cathode catalysts for microbial fuel cell: High catalytic activity and inhibition of biofilm formation, *Nano Energy*, 2019, 57, 811-819.
- 8. L. Tan, Q.-R. Pan, X.-T. Wu, N. Li, J.-H. Song and Z.-Q. Liu, Core@shelled Co/CoO embedded nitrogen-doped carbon nanosheets coupled graphene as efficient cathode catalysts for enhanced oxygen reduction reaction in microbial fuel cells, *ACS Sustainable Chemistry* & *Engineering*, 2019, 7, 6335-6344.
- 9. P. Y. Jiang, Z. H. Xiao, Y. F. Wang, N. Li and Z. Q. Liu, Enhanced performance of microbial fuel cells using Ag nanoparticles modified Co, N co-doped carbon nanosheets as bifunctional cathode catalyst, *Bioelectrochemistry*, 2021, **138**, 107717.
- 10. Z. Zha, Z. Zhang, P. Xiang, H. Zhu, X. Shi and S. Chen, Porous graphitic carbon from mangosteen peel as efficient electrocatalyst in microbial fuel cells, *Science of The Total Environment*, 2021, **764**, 142918.
- 11. M. Li, S. Zhou and M. Xu, Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells, *Chemical Engineering Journal*, 2017, **328**, 106-116.
- K. Zhong, Y. Wang, Q. Wu, H. You, H. Zhang, M. Su, R. Liang, J. Zuo, S. Yang and J. Tang, Highly conductive skeleton Graphitic-C₃N₄ assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells, *Journal of Power Sources*, 2020, 467.